BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 32820687)

  • 1. Adverse event profile differences between rituximab and ocrelizumab: Findings from the FDA Adverse Event Reporting Database.
    Caldito NG; Shirani A; Salter A; Stuve O
    Mult Scler; 2021 Jun; 27(7):1066-1076. PubMed ID: 32820687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data mining and analysis of adverse event signals associated with teprotumumab using the Food and Drug Administration adverse event reporting system database.
    Zhang S; Wang Y; Qi Z; Tong S; Zhu D
    Int J Clin Pharm; 2024 Apr; 46(2):471-479. PubMed ID: 38245664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse events with risankizumab in the real world: postmarketing pharmacovigilance assessment of the FDA adverse event reporting system.
    Shu Y; Chen J; Ding Y; Zhang Q
    Front Immunol; 2023; 14():1169735. PubMed ID: 37256136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocrine toxicity of immune checkpoint inhibitors: a real-world study leveraging US Food and Drug Administration adverse events reporting system.
    Zhai Y; Ye X; Hu F; Xu J; Guo X; Zhuang Y; He J
    J Immunother Cancer; 2019 Nov; 7(1):286. PubMed ID: 31694698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-Associated Acute Kidney Injury Identified in the United States Food and Drug Administration Adverse Event Reporting System Database.
    Welch HK; Kellum JA; Kane-Gill SL
    Pharmacotherapy; 2018 Aug; 38(8):785-793. PubMed ID: 29883524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the safety profile of tremelimumab: an analysis of the FDA adverse event reporting system.
    Zhao Y; Jiang H; Xue L; Zhou M; Zhao X; Liu F; Jiang S; Huang J; Meng L
    Int J Clin Pharm; 2024 Apr; 46(2):480-487. PubMed ID: 38245663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data mining and analysis for emicizumab adverse event signals based on the Food and Drug Administration Adverse Event Reporting System database.
    Wei L; Tian Y; Chen X; Guo X; Chen C; Zheng Y; Xu J; Ye X
    Int J Clin Pharm; 2023 Jun; 45(3):622-629. PubMed ID: 36848023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity signals associated with secukinumab: A pharmacovigilance study based on the United States Food and Drug Administration Adverse Event Reporting System database.
    Zheng Y; Guo X; Chen C; Chi L; Guo Z; Liang J; Wei L; Chen X; Ye X; He J
    Br J Clin Pharmacol; 2023 Feb; 89(2):865-873. PubMed ID: 36106653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacovigilance Study of Infigratinib: A Safety Analysis of the FDA Adverse Event Reporting System.
    Zhao D; Long X; Zhou J; Wang J
    Drugs R D; 2023 Dec; 23(4):403-409. PubMed ID: 37700091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocrelizumab-related neutropenia: Effects of age, sex and bodyweight using the FDA Adverse Event Reporting System (FAERS).
    Hammer H; Kamber N; Pistor M; Diem L; Friedli C; Chan A; Hoepner R; Salmen A
    Mult Scler Relat Disord; 2022 Sep; 65():104015. PubMed ID: 35810719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pharmacovigilance Study of Adverse Drug Reactions Reported for Cardiovascular Disease Medications Approved Between 2012 and 2017 in the United States Food and Drug Administration Adverse Event Reporting System (FAERS) Database.
    Patel NM; Stottlemyer BA; Gray MP; Boyce RD; Kane-Gill SL
    Cardiovasc Drugs Ther; 2022 Apr; 36(2):309-322. PubMed ID: 33599896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pharmacovigilance analysis of FDA adverse event reporting system events for romosozumab.
    Chen Z; Li M; Li S; Li Y; Wu J; Qiu K; Yu X; Huang L; Chen G
    Expert Opin Drug Saf; 2023 Apr; 22(4):339-342. PubMed ID: 36178002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-world disproportionality analysis of FDA Adverse Event Reporting System (FAERS) events for baricitinib.
    Peng L; Xiao K; Ottaviani S; Stebbing J; Wang YJ
    Expert Opin Drug Saf; 2020 Nov; 19(11):1505-1511. PubMed ID: 32693646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adverse events of guselkumab in the real world: emerging signals to target preventive strategies from the FDA adverse event reporting system.
    Xiang DC; Chen W; Fu ZW; Wu XH; Gao P; Wu Y
    Expert Opin Drug Saf; 2023; 22(10):943-955. PubMed ID: 37294594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-marketing safety of anti-IL-5 monoclonal antibodies (mAbs): an analysis of the FDA Adverse Event Reporting System (FAERS).
    Zou SP; Yang HY; Ouyang M; Cheng Q; Shi X; Sun MH
    Expert Opin Drug Saf; 2024 Mar; 23(3):353-362. PubMed ID: 37610085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular toxicity profiles of immune checkpoint inhibitors with or without angiogenesis inhibitors: a real-world pharmacovigilance analysis based on the FAERS database from 2014 to 2022.
    Wang Y; Cui C; Deng L; Wang L; Ren X
    Front Immunol; 2023; 14():1127128. PubMed ID: 37292205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adverse Events of Axitinib plus Pembrolizumab Versus Lenvatinib plus Pembrolizumab: A Pharmacovigilance Study in Food and Drug Administration Adverse Event Reporting System.
    Matsumoto J; Iwata N; Watari S; Ushio S; Shiromizu S; Takeda T; Hamano H; Kajizono M; Araki M; Nasu Y; Ariyoshi N; Zamami Y
    Eur Urol Focus; 2023 Jan; 9(1):141-144. PubMed ID: 35915038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bullous Pemphigoid and Diabetes medications: A disproportionality analysis based on the FDA Adverse Event Reporting System.
    Huang L; Liu Y; Li H; Huang W; Geng R; Tang Z; Jiang Y
    Int J Med Sci; 2021; 18(9):1946-1952. PubMed ID: 33850463
    [No Abstract]   [Full Text] [Related]  

  • 19. A real-world pharmacovigilance study of FDA Adverse Event Reporting System (FAERS) events for osimertinib.
    Yin Y; Shu Y; Zhu J; Li F; Li J
    Sci Rep; 2022 Nov; 12(1):19555. PubMed ID: 36380085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropsychiatric adverse events of chloroquine: a real-world pharmacovigilance study using the FDA Adverse Event Reporting System (FAERS) database.
    Sato K; Mano T; Iwata A; Toda T
    Biosci Trends; 2020 May; 14(2):139-143. PubMed ID: 32321905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.