These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32820724)

  • 1. Detachment of the remora suckerfish disc: kinematics and a bio-inspired robotic model.
    Wang S; Li L; Sun W; Wainwright D; Wang H; Zhao W; Chen B; Chen Y; Wen L
    Bioinspir Biomim; 2020 Aug; 15(5):056018. PubMed ID: 32820724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic remora disc with tunable, reversible adhesion for surface sliding and skimming.
    Wang S; Li L; Zhao W; Zhang Y; Wen L
    Bioinspir Biomim; 2022 Mar; 17(3):. PubMed ID: 35073526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish.
    Wang Y; Yang X; Chen Y; Wainwright DK; Kenaley CP; Gong Z; Liu Z; Liu H; Guan J; Wang T; Weaver JC; Wood RJ; Wen L
    Sci Robot; 2017 Sep; 2(10):. PubMed ID: 33157888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and computational fluid dynamics of an attached remora (Echeneis naucrates).
    Beckert M; Flammang BE; Anderson EJ; Nadler JH
    Zoology (Jena); 2016 Oct; 119(5):430-438. PubMed ID: 27421679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remora fish suction pad attachment is enhanced by spinule friction.
    Beckert M; Flammang BE; Nadler JH
    J Exp Biol; 2015 Nov; 218(Pt 22):3551-8. PubMed ID: 26417010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces.
    Li L; Wang S; Zhang Y; Song S; Wang C; Tan S; Zhao W; Wang G; Sun W; Yang F; Liu J; Chen B; Xu H; Nguyen P; Kovac M; Wen L
    Sci Robot; 2022 May; 7(66):eabm6695. PubMed ID: 35584203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sucker with a fat lip: The soft tissues underlying the viscoelastic grip of remora adhesion.
    Cohen KE; Crawford CH; Hernandez LP; Beckert M; Nadler JH; Flammang BE
    J Anat; 2020 Oct; 237(4):643-654. PubMed ID: 32484929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remora-Inspired Reversible Adhesive for Underwater Applications.
    Lee SH; Song HW; Kang BS; Kwak MK
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47571-47576. PubMed ID: 31746182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired remora adhesive disc offers insight into evolution.
    Gamel KM; Garner AM; Flammang BE
    Bioinspir Biomim; 2019 Aug; 14(5):056014. PubMed ID: 31382254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc.
    Sandoval JA; Jadhav S; Quan H; Deheyn DD; Tolley MT
    Bioinspir Biomim; 2019 Oct; 14(6):066016. PubMed ID: 31553967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
    Behbahani SB; Tan X
    Bioinspir Biomim; 2016 May; 11(3):036009. PubMed ID: 27144946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of temporomandibular joint disc on the basis of porcine preparation investigations.
    Chladek W; Czerwik I
    Acta Bioeng Biomech; 2008; 10(4):15-20. PubMed ID: 19385507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SBOR: a minimalistic soft self-burrowing-out robot inspired by razor clams.
    Tao JJ; Huang S; Tang Y
    Bioinspir Biomim; 2020 Jul; 15(5):055003. PubMed ID: 32259805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bio-inspired expandable soft suction gripper for minimal invasive surgery-an explorative design study.
    Kortman VG; Sakes A; Endo G; Breedveld P
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37059112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Morphology of Suction Discs to Enable Directional Adhesion for Locomotion in Wet Environments.
    Sandoval JA; Ishida M; Jadhav S; Huen S; Tolley MT
    Soft Robot; 2022 Dec; 9(6):1083-1097. PubMed ID: 35285735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.