BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

621 related articles for article (PubMed ID: 32820760)

  • 1. Flexible supercapacitor electrodes using metal-organic frameworks.
    Cherusseri J; Pandey D; Sambath Kumar K; Thomas J; Zhai L
    Nanoscale; 2020 Sep; 12(34):17649-17662. PubMed ID: 32820760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage.
    Li Y; Xu Y; Yang W; Shen W; Xue H; Pang H
    Small; 2018 Jun; 14(25):e1704435. PubMed ID: 29750438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances of Electroactive Metal-Organic Frameworks.
    Cong C; Ma H
    Small; 2023 Apr; 19(15):e2207547. PubMed ID: 36631286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of Hierarchical NiCo
    Li G; Cai H; Li X; Zhang J; Zhang D; Yang Y; Xiong J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37675-37684. PubMed ID: 31532185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives.
    Wang T; Chen S; Chen KJ
    Chem Rec; 2023 Jun; 23(6):e202300006. PubMed ID: 36942948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review.
    Vinodh R; Babu RS; Sambasivam S; Gopi CVVM; Alzahmi S; Kim HJ; de Barros ALF; Obaidat IM
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.
    Liang Z; Qu C; Guo W; Zou R; Xu Q
    Adv Mater; 2018 Sep; 30(37):e1702891. PubMed ID: 29164712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-organic framework based electrode materials for lithium-ion batteries: a review.
    Mehek R; Iqbal N; Noor T; Amjad MZB; Ali G; Vignarooban K; Khan MA
    RSC Adv; 2021 Sep; 11(47):29247-29266. PubMed ID: 35479575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Necklace Incorporated Electroactive Reservoir Constructing Flexible Papers for Advanced Lithium-Ion Batteries.
    Du M; Rui K; Chang Y; Zhang Y; Ma Z; Sun W; Yan Q; Zhu J; Huang W
    Small; 2018 Jan; 14(2):. PubMed ID: 29165932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose Nanofiber @ Conductive Metal-Organic Frameworks for High-Performance Flexible Supercapacitors.
    Zhou S; Kong X; Zheng B; Huo F; Strømme M; Xu C
    ACS Nano; 2019 Aug; 13(8):9578-9586. PubMed ID: 31294960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards flexible solid-state supercapacitors for smart and wearable electronics.
    Dubal DP; Chodankar NR; Kim DH; Gomez-Romero P
    Chem Soc Rev; 2018 Mar; 47(6):2065-2129. PubMed ID: 29399689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework-Derived CoO
    Li Y; Xie H; Li J; Yamauchi Y; Henzie J
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41649-41656. PubMed ID: 34459577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics.
    Zhang X; Pei Z; Wang C; Yuan Z; Wei L; Pan Y; Mahmood A; Shao Q; Chen Y
    Small; 2019 Nov; 15(47):e1903817. PubMed ID: 31609075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.