These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. MnO Ding B; Zheng P; Jiang F; Zhao Y; Wang M; Chang M; Ma P; Lin J Angew Chem Int Ed Engl; 2020 Sep; 59(38):16381-16384. PubMed ID: 32484598 [TBL] [Abstract][Full Text] [Related]
63. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Chen L; Liu D; Wu M; Chau HF; Wang K; Fung YH; Wong KL; Wang Z; Wu F Nanotechnology; 2020 Jul; 31(31):315101. PubMed ID: 32252029 [TBL] [Abstract][Full Text] [Related]
64. Synergistic chemo-photodynamic therapy mediated by light-activated ROS-degradable nanocarriers. Chen Y; Gao Y; Li Y; Wang K; Zhu J J Mater Chem B; 2019 Jan; 7(3):460-468. PubMed ID: 32254733 [TBL] [Abstract][Full Text] [Related]
65. Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In Vitro Synergistic Anticancer Therapy. Hong H; Zou Q; Liu Y; Wang S; Shen G; Yan X ChemMedChem; 2021 Aug; 16(15):2381-2385. PubMed ID: 33908190 [TBL] [Abstract][Full Text] [Related]
66. A small-sized and stable 2D metal-organic framework: a functional nanoplatform for effective photodynamic therapy. Gao Z; Chen F; Li Y; Zhang Y; Cheng K; An P; Sun B Dalton Trans; 2019 Dec; 48(45):16861-16868. PubMed ID: 31710076 [TBL] [Abstract][Full Text] [Related]
67. An 808 nm Light-Sensitized Upconversion Nanoplatform for Multimodal Imaging and Efficient Cancer Therapy. Gulzar A; Wang Z; He F; Yang D; Zhang F; Gai S; Yang P Inorg Chem; 2020 Apr; 59(7):4909-4923. PubMed ID: 32162905 [TBL] [Abstract][Full Text] [Related]
68. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy. Du E; Hu X; Roy S; Wang P; Deasy K; Mochizuki T; Zhang Y Chem Commun (Camb); 2017 May; 53(44):6033-6036. PubMed ID: 28524186 [TBL] [Abstract][Full Text] [Related]
69. Tumor microenvironment activated nanoenzyme-based agents for enhanced MRI-guided photothermal therapy in the NIR-II window. Chen Y; Liu Y; Kuang P; Guo C; Zan J; Xie C; Yin C; Fan Q Chem Commun (Camb); 2022 Feb; 58(16):2742-2745. PubMed ID: 35119059 [TBL] [Abstract][Full Text] [Related]
70. A cyanine-derivative photosensitizer with enhanced photostability for mitochondria-targeted photodynamic therapy. Zhao X; Yang Y; Yu Y; Guo S; Wang W; Zhu S Chem Commun (Camb); 2019 Nov; 55(90):13542-13545. PubMed ID: 31647067 [TBL] [Abstract][Full Text] [Related]
71. Tumor Microenvironment-Responsive Theranostic Nanoplatform for in Situ Self-Boosting Combined Phototherapy through Intracellular Reassembly. Liu Y; Jing J; Jia F; Su S; Tian Y; Gao N; Yang C; Zhang R; Wang W; Zhang X ACS Appl Mater Interfaces; 2020 Feb; 12(6):6966-6977. PubMed ID: 31965785 [TBL] [Abstract][Full Text] [Related]
72. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro. Gao L; Liu R; Gao F; Wang Y; Jiang X; Gao X ACS Nano; 2014 Jul; 8(7):7260-71. PubMed ID: 24992260 [TBL] [Abstract][Full Text] [Related]
73. Black phosphorus quantum dots encapsulated in anionic waterborne polyurethane nanoparticles for enhancing stability and reactive oxygen species generation for cancer PDT/PTT therapy. Lu F; Li Z; Kang Y; Su Z; Yu R; Zhang S J Mater Chem B; 2020 Dec; 8(46):10650-10661. PubMed ID: 33150923 [TBL] [Abstract][Full Text] [Related]
74. A zinc(II) phthalocyanine conjugated with an oxaliplatin derivative for dual chemo- and photodynamic therapy. Lau JT; Lo PC; Fong WP; Ng DK J Med Chem; 2012 Jun; 55(11):5446-54. PubMed ID: 22646131 [TBL] [Abstract][Full Text] [Related]
75. Direct Photocontrol of Peptidomimetics: An Alternative to Oxygen-Dependent Photodynamic Cancer Therapy. Babii O; Afonin S; Garmanchuk LV; Nikulina VV; Nikolaienko TV; Storozhuk OV; Shelest DV; Dasyukevich OI; Ostapchenko LI; Iurchenko V; Zozulya S; Ulrich AS; Komarov IV Angew Chem Int Ed Engl; 2016 Apr; 55(18):5493-6. PubMed ID: 27028784 [TBL] [Abstract][Full Text] [Related]
76. A Dual Killing Strategy: Photocatalytic Generation of Singlet Oxygen with Concomitant Pt Norman DJ; Gambardella A; Mount AR; Murray AF; Bradley M Angew Chem Int Ed Engl; 2019 Oct; 58(40):14189-14192. PubMed ID: 31397963 [TBL] [Abstract][Full Text] [Related]
77. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Zhou S; Hu X; Xia R; Liu S; Pei Q; Chen G; Xie Z; Jing X Angew Chem Int Ed Engl; 2020 Dec; 59(51):23198-23205. PubMed ID: 32852145 [TBL] [Abstract][Full Text] [Related]
78. Design and synthesis of efficient heavy-atom-free photosensitizers for photodynamic therapy of cancer. Nguyen VN; Park SJ; Qi S; Ha J; Heo S; Yim Y; Baek G; Lim CS; Lee DJ; Kim HM; Yoon J Chem Commun (Camb); 2020 Sep; 56(77):11489-11492. PubMed ID: 32857074 [TBL] [Abstract][Full Text] [Related]
79. Facile synthesis of Fe-p-aminophenol nanoparticles for photothermal therapy. Liu Y; Liu S; Hu C; Li Y; Pang M Dalton Trans; 2019 Dec; 48(45):16848-16852. PubMed ID: 31687718 [TBL] [Abstract][Full Text] [Related]
80. Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. Wang X; Tian Y; Liao X; Tang Y; Ni Q; Sun J; Zhao Y; Zhang J; Teng Z; Lu G J Colloid Interface Sci; 2020 Apr; 565():483-493. PubMed ID: 31982715 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]