These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 32821283)
21. Analysis of Immune and Inflammation Characteristics of Atherosclerosis from Different Sample Sources. Nie H; Yan C; Zhou W; Li TS Oxid Med Cell Longev; 2022; 2022():5491038. PubMed ID: 35509837 [TBL] [Abstract][Full Text] [Related]
22. Development and Validation of a Prognostic Gene Signature Correlated With M2 Macrophage Infiltration in Esophageal Squamous Cell Carcinoma. Yao J; Duan L; Huang X; Liu J; Fan X; Xiao Z; Yan R; Liu H; An G; Hu B; Ge Y Front Oncol; 2021; 11():769727. PubMed ID: 34926275 [TBL] [Abstract][Full Text] [Related]
23. Bioinformatics analysis reveals the landscape of immune cell infiltration and immune-related pathways participating in the progression of carotid atherosclerotic plaques. Tan L; Xu Q; Shi R; Zhang G Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):96-107. PubMed ID: 33480285 [TBL] [Abstract][Full Text] [Related]
24. Key Disease-Related Genes and Immune Cell Infiltration Landscape in Inflammatory Bowel Disease: A Bioinformatics Investigation. Alghamdi KS; Kassar RH; Farrash WF; Obaid AA; Idris S; Siddig A; Shakoori AM; Alshehre SM; Minshawi F; Mujalli A Int J Mol Sci; 2024 Sep; 25(17):. PubMed ID: 39273699 [TBL] [Abstract][Full Text] [Related]
25. Exploring biomarkers for autophagy-mediated macrophage pyroptosis in atherosclerosis. Yang R; Wang D; Ding Y; Liu Q Cell Biol Int; 2023 Dec; 47(12):1905-1925. PubMed ID: 37641197 [TBL] [Abstract][Full Text] [Related]
26. Identifying Hub Genes and Immune Cell Infiltration for the Progression of Carotid Atherosclerotic Plaques in the Context of Predictive and Preventive Using Integrative Bioinformatics Approaches and Machine-Learning Strategies. Zhang H; Huang Y; Li X; Chen W; Lun Y; Zhang J J Immunol Res; 2022; 2022():7657379. PubMed ID: 36304068 [TBL] [Abstract][Full Text] [Related]
27. Integrated Bioinformatics-Based Identification of Ferroptosis-Related Genes in Carotid Atherosclerosis. Wei L; Wang N; Li R; Zhao H; Zheng X; Deng Z; Sun Z; Xing Z Dis Markers; 2022; 2022():3379883. PubMed ID: 36393970 [TBL] [Abstract][Full Text] [Related]
28. Investigation of the Underlying Genes and Mechanism of Macrophage-Enriched Ruptured Atherosclerotic Plaques Using Bioinformatics Method. Wang H; Liu D; Zhang H J Atheroscler Thromb; 2019 Jul; 26(7):636-658. PubMed ID: 30643084 [TBL] [Abstract][Full Text] [Related]
29. Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet. Pan Y; Yu C; Huang J; Rong Y; Chen J; Chen M Lipids Health Dis; 2020 Mar; 19(1):54. PubMed ID: 32213192 [TBL] [Abstract][Full Text] [Related]
30. Transcriptomic analysis reveals molecular characterization and immune landscape of PANoptosis-related genes in atherosclerosis. Zheng Z; Li K; Yang Z; Wang X; Shen C; Zhang Y; Lu H; Yin Z; Sha M; Ye J; Zhu L Inflamm Res; 2024 Jun; 73(6):961-978. PubMed ID: 38587531 [TBL] [Abstract][Full Text] [Related]
31. Bioinformatics analysis of potential common pathogenic mechanism for carotid atherosclerosis and Parkinson's disease. Wang Q; Xue Q Front Aging Neurosci; 2023; 15():1202952. PubMed ID: 37649719 [TBL] [Abstract][Full Text] [Related]
32. Identification of candidate biomarkers and therapeutic agents for heart failure by bioinformatics analysis. Kolur V; Vastrad B; Vastrad C; Kotturshetti S; Tengli A BMC Cardiovasc Disord; 2021 Jul; 21(1):329. PubMed ID: 34218797 [TBL] [Abstract][Full Text] [Related]
33. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. Hu Y; Yu Y; Dong H; Jiang W PeerJ; 2023; 11():e15437. PubMed ID: 37250717 [TBL] [Abstract][Full Text] [Related]
34. Common ground on immune infiltration landscape and diagnostic biomarkers in diabetes-complicated atherosclerosis: an integrated bioinformatics analysis. Qi Y; Zhang Y; Guan S; Liu L; Wang H; Chen Y; Zhou Q; Xu F; Zhang Y Front Endocrinol (Lausanne); 2024; 15():1381229. PubMed ID: 39145311 [TBL] [Abstract][Full Text] [Related]
35. Identification of foam cell biomarkers by microarray analysis. Song Z; Lv S; Wu H; Qin L; Cao H; Zhang B; Ren S BMC Cardiovasc Disord; 2020 May; 20(1):211. PubMed ID: 32375652 [TBL] [Abstract][Full Text] [Related]
36. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Depuydt MAC; Prange KHM; Slenders L; Örd T; Elbersen D; Boltjes A; de Jager SCA; Asselbergs FW; de Borst GJ; Aavik E; Lönnberg T; Lutgens E; Glass CK; den Ruijter HM; Kaikkonen MU; Bot I; Slütter B; van der Laan SW; Yla-Herttuala S; Mokry M; Kuiper J; de Winther MPJ; Pasterkamp G Circ Res; 2020 Nov; 127(11):1437-1455. PubMed ID: 32981416 [TBL] [Abstract][Full Text] [Related]
37. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. Song J; Ke B; Fang X Biomed Res Int; 2024; 2024():5674711. PubMed ID: 39328595 [No Abstract] [Full Text] [Related]
38. Identification of the pivotal role of SPP1 in kidney stone disease based on multiple bioinformatics analysis. Hong SY; Xia QD; Xu JZ; Liu CQ; Sun JX; Xun Y; Wang SG BMC Med Genomics; 2022 Jan; 15(1):7. PubMed ID: 35016690 [TBL] [Abstract][Full Text] [Related]
39. Identification and Validation of Candidate Gene Module Along With Immune Cells Infiltration Patterns in Atherosclerosis Progression to Plaque Rupture Xu J; Chen C; Yang Y Front Cardiovasc Med; 2022; 9():894879. PubMed ID: 35811739 [TBL] [Abstract][Full Text] [Related]
40. Identification of potential M2 macrophage-associated diagnostic biomarkers in coronary artery disease. Li K; Kong R; Ma L; Cao Y; Li W; Chen R; Gong K; Jiang L Biosci Rep; 2022 Dec; 42(12):. PubMed ID: 36222281 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]