BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32821475)

  • 1. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
    Lan G; Gu B; Larin KV; Twa MD
    Transl Vis Sci Technol; 2020 Apr; 9(5):3. PubMed ID: 32821475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography.
    Nair A; Singh M; Aglyamov SR; Larin KV
    J Biomed Opt; 2020 May; 25(5):1-9. PubMed ID: 32372574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
    Lan G; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2021 Jan; 98(1):58-63. PubMed ID: 33394932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heartbeat optical coherence elastography: corneal biomechanics in vivo.
    Nair A; Singh M; Aglyamov S; Larin KV
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33624461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography.
    De Stefano VS; Ford MR; Seven I; Dupps WJ
    PLoS One; 2018; 13(12):e0209480. PubMed ID: 30592752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heartbeat-Induced Corneal Axial Displacement and Strain Measured by High Frequency Ultrasound Elastography in Human Volunteers.
    Kwok S; Clayson K; Hazen N; Pan X; Ma Y; Hendershot AJ; Liu J
    Transl Vis Sci Technol; 2020 Dec; 9(13):33. PubMed ID: 33384887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo human corneal natural frequency quantification using dynamic optical coherence elastography: Repeatability and reproducibility.
    Lan G; Aglyamov S; Larin KV; Twa MD
    J Biomech; 2021 May; 121():110427. PubMed ID: 33873114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal Heartbeat and Compression Optical Coherence Elastography for Mapping Corneal Biomechanics.
    Nair A; Singh M; Aglyamov SR; Larin KV
    Front Med (Lausanne); 2022; 9():833597. PubMed ID: 35479957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact Acoustic Micro-Tapping Optical Coherence Elastography for Quantification of Corneal Anisotropic Elasticity: In Vivo Rabbit Study.
    Kirby MA; Regnault G; Pelivanov I; O'Donnell M; Wang RK; Shen TT
    Transl Vis Sci Technol; 2023 Mar; 12(3):15. PubMed ID: 36930138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography.
    Jin Z; Chen S; Dai Y; Bao C; Ye S; Zhou Y; Wang Y; Huang S; Wang Y; Shen M; Zhu D; Lu F
    J Biophotonics; 2020 Aug; 13(8):e202000104. PubMed ID: 32368840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-Static Optical Coherence Elastography to Characterize Human Corneal Biomechanical Properties.
    Kling S; Torres-Netto EA; Spiru B; Sekundo W; Hafezi F
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):29. PubMed ID: 32539132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute alcohol consumption modulates corneal biomechanical properties as revealed by optical coherence elastography.
    Mekonnen TT; Zevallos-Delgado C; Hatami M; Singh M; Aglyamov SR; Larin KV
    J Biomech; 2024 May; 169():112155. PubMed ID: 38761746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence elastography measures the biomechanical properties of the
    Nair A; Zvietcovich F; Singh M; Weikert MP; Aglyamov SR; Larin KV
    J Biomed Opt; 2024 Jan; 29(1):016002. PubMed ID: 38223300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applanation optical coherence elastography: noncontact measurement of intraocular pressure, corneal biomechanical properties, and corneal geometry with a single instrument.
    Singh M; Han Z; Nair A; Schill A; Twa MD; Larin KV
    J Biomed Opt; 2017 Feb; 22(2):20502. PubMed ID: 28241272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence elastography in ophthalmology.
    Kirby MA; Pelivanov I; Song S; Ambrozinski Ł; Yoon SJ; Gao L; Li D; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2017 Dec; 22(12):1-28. PubMed ID: 29275544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography.
    Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD
    Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Coherence Elastography-Based Corneal Strain Imaging During Low-Amplitude Intraocular Pressure Modulation.
    Kling S; Khodadadi H; Goksel O
    Front Bioeng Biotechnol; 2019; 7():453. PubMed ID: 32083064
    [No Abstract]   [Full Text] [Related]  

  • 19. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography.
    Singh M; Li J; Han Z; Wu C; Aglyamov SR; Twa MD; Larin KV
    J Refract Surg; 2016 Aug; 32(8):562-7. PubMed ID: 27505317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances.
    Zaitsev VY; Matveyev AL; Matveev LA; Sovetsky AA; Hepburn MS; Mowla A; Kennedy BF
    J Biophotonics; 2021 Feb; 14(2):e202000257. PubMed ID: 32749033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.