These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32821665)

  • 41. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells.
    Chung CS; Fujita N; Kawahara N; Yui S; Nam E; Nishimura R
    J Vet Med Sci; 2013 Jul; 75(7):879-86. PubMed ID: 23419261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the Anti-Inflammatory Effects of Mouse Adipose- and Bone-Marrow-Derived Multilineage-Differentiating Stress-Enduring Cells in Acute-Phase Spinal Cord Injury.
    Nagaoki T; Kumagai G; Nitobe Y; Sasaki A; Fujita T; Fukutoku T; Saruta K; Tsukuda M; Asari T; Wada K; Dezawa M; Ishibashi Y
    J Neurotrauma; 2023 Dec; 40(23-24):2596-2609. PubMed ID: 37051701
    [No Abstract]   [Full Text] [Related]  

  • 43. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model.
    Yousefifard M; Nasirinezhad F; Shardi Manaheji H; Janzadeh A; Hosseini M; Keshavarz M
    Stem Cell Res Ther; 2016 Mar; 7():36. PubMed ID: 26957122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo flow cytometry combined with intravital microscopy to monitor kinetics of transplanted bone marrow mononuclear cells in peripheral blood and bone marrow.
    Wang F; Wei D; Suo Y; Zhu X; Yuan Y; Gao W; Jiang H; Wei X; Chen T
    Mol Biol Rep; 2020 Jan; 47(1):1-10. PubMed ID: 31813129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord.
    Yano S; Kuroda S; Lee JB; Shichinohe H; Seki T; Ikeda J; Nishimura G; Hida K; Tamura M; Iwasaki Y
    J Neurotrauma; 2005 Aug; 22(8):907-18. PubMed ID: 16083357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implantation of autologous bone marrow mononuclear cells into ischemic myocardium enhances coronary capillaries and systolic function in miniswine.
    Li CJ; Gao RL; Yang YJ; Hu FH; Yang WX; You SJ; Song LF; Ruan YM; Qiao SB; Chen JL; Li JJ
    Chin Med Sci J; 2008 Dec; 23(4):234-8. PubMed ID: 19180885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone Marrow Mononuclear Cells Transplantation and Training Increased Transplantation of Energy Source Transporters in Chronic Stroke.
    Ogawa Y; Saino O; Okinaka Y; Kikuchi-Taura A; Takeuchi Y; Taguchi A
    J Stroke Cerebrovasc Dis; 2021 Aug; 30(8):105932. PubMed ID: 34148020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy.
    Memon IA; Sawa Y; Miyagawa S; Taketani S; Matsuda H
    J Thorac Cardiovasc Surg; 2005 Sep; 130(3):646-53. PubMed ID: 16153908
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.
    Han X; Yang N; Cui Y; Xu Y; Dang G; Song C
    Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Autologous bone marrow transplantation in non-Hodgkin's lymphomas: prediction of mononuclear cell yield in bone marrow harvests.
    Rinaldi C; Savignano C; Silvestri F; Geromin A; Cerno M; Fanin R; Biffoni F; Baccarani M
    Haematologica; 1995; 80(5):443-7. PubMed ID: 8566888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial.
    Moniche F; Gonzalez A; Gonzalez-Marcos JR; Carmona M; PiƱero P; Espigado I; Garcia-Solis D; Cayuela A; Montaner J; Boada C; Rosell A; Jimenez MD; Mayol A; Gil-Peralta A
    Stroke; 2012 Aug; 43(8):2242-4. PubMed ID: 22764211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat.
    Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T
    Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury.
    Jarocha D; Milczarek O; Kawecki Z; Wendrychowicz A; Kwiatkowski S; Majka M
    Stem Cells Transl Med; 2014 Mar; 3(3):395-404. PubMed ID: 24493853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase I-II Clinical Trial Assessing Safety and Efficacy of Umbilical Cord Blood Mononuclear Cell Transplant Therapy of Chronic Complete Spinal Cord Injury.
    Zhu H; Poon W; Liu Y; Leung GK; Wong Y; Feng Y; Ng SCP; Tsang KS; Sun DTF; Yeung DK; Shen C; Niu F; Xu Z; Tan P; Tang S; Gao H; Cha Y; So KF; Fleischaker R; Sun D; Chen J; Lai J; Cheng W; Young W
    Cell Transplant; 2016 Nov; 25(11):1925-1943. PubMed ID: 27075659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial.
    Yoon SH; Shim YS; Park YH; Chung JK; Nam JH; Kim MO; Park HC; Park SR; Min BH; Kim EY; Choi BH; Park H; Ha Y
    Stem Cells; 2007 Aug; 25(8):2066-73. PubMed ID: 17464087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficacy of the coadministration of granulocyte colony-stimulating factor and stem cell factor in the activation of intrinsic cells after spinal cord injury in mice.
    Osada T; Watanabe M; Hasuo A; Imai M; Suyama K; Sakai D; Kawada H; Matsumae M; Mochida J
    J Neurosurg Spine; 2010 Oct; 13(4):516-23. PubMed ID: 20887150
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms of improvement of left ventricle remodeling by trans-planting two kinds of autologous bone marrow stem cells in pigs.
    Li SR; Qi XY; Hu FL; Zhang JQ; Wang TH; Dang Y; Meng CL; Liu HL; Li YX; Wu D; Dong J; Xun LY; Gao LH; Jin FC
    Chin Med J (Engl); 2008 Dec; 121(23):2403-9. PubMed ID: 19102957
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes.
    Saberi H; Moshayedi P; Aghayan HR; Arjmand B; Hosseini SK; Emami-Razavi SH; Rahimi-Movaghar V; Raza M; Firouzi M
    Neurosci Lett; 2008 Sep; 443(1):46-50. PubMed ID: 18662744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury.
    Jeffery ND; Lakatos A; Franklin RJ
    J Neurotrauma; 2005 Nov; 22(11):1282-93. PubMed ID: 16305316
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury.
    Kishk NA; Gabr H; Hamdy S; Afifi L; Abokresha N; Mahmoud H; Wafaie A; Bilal D
    Neurorehabil Neural Repair; 2010 Oct; 24(8):702-8. PubMed ID: 20660620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.