BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 3282170)

  • 1. Dissecting the catalytic triad of a serine protease.
    Carter P; Wells JA
    Nature; 1988 Apr; 332(6164):564-8. PubMed ID: 3282170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interaction among catalytic residues in subtilisin BPN'.
    Carter P; Wells JA
    Proteins; 1990; 7(4):335-42. PubMed ID: 2199971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.
    Nicolas A; Egmond M; Verrips CT; de Vlieg J; Longhi S; Cambillau C; Martinez C
    Biochemistry; 1996 Jan; 35(2):398-410. PubMed ID: 8555209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 0.78 A structure of a serine protease: Bacillus lentus subtilisin.
    Kuhn P; Knapp M; Soltis SM; Ganshaw G; Thoene M; Bott R
    Biochemistry; 1998 Sep; 37(39):13446-52. PubMed ID: 9753430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a serine protease-like catalytic triad on an antibody light chain displayed on the yeast cell surface.
    Okochi N; Kato-Murai M; Kadonosono T; Ueda M
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):597-603. PubMed ID: 17899065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis and the role of the oxyanion hole in subtilisin.
    Bryan P; Pantoliano MW; Quill SG; Hsiao HY; Poulos T
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3743-5. PubMed ID: 3520553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis probing the catalytic role of arginines 165 and 166 of human cytomegalovirus protease.
    Liang PH; Brun KA; Feild JA; O'Donnell K; Doyle ML; Green SM; Baker AE; Blackburn MN; Abdel-Meguid SS
    Biochemistry; 1998 Apr; 37(17):5923-9. PubMed ID: 9558326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z
    Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding.
    Bürgisser DM; Thöny B; Redweik U; Hess D; Heizmann CW; Huber R; Nar H
    J Mol Biol; 1995 Oct; 253(2):358-69. PubMed ID: 7563095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1.2 A crystal structure of the serine carboxyl proteinase pro-kumamolisin; structure of an intact pro-subtilase.
    Comellas-Bigler M; Maskos K; Huber R; Oyama H; Oda K; Bode W
    Structure; 2004 Jul; 12(7):1313-23. PubMed ID: 15242607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.
    Jaouadi B; Ellouz-Chaabouni S; Rhimi M; Bejar S
    Biochimie; 2008 Sep; 90(9):1291-305. PubMed ID: 18397761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of Sindbis virus capsid mutants involving assembly and catalysis.
    Choi HK; Lee S; Zhang YP; McKinney BR; Wengler G; Rossmann MG; Kuhn RJ
    J Mol Biol; 1996 Sep; 262(2):151-67. PubMed ID: 8831786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and kinetic contributions of the oxyanion binding site to the catalytic activity of acylaminoacyl peptidase.
    Kiss AL; Palló A; Náray-Szabó G; Harmat V; Polgár L
    J Struct Biol; 2008 May; 162(2):312-23. PubMed ID: 18325786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-barrier hydrogen bond in subtilisin: 1H and 15N NMR studies with peptidyl trifluoromethyl ketones.
    Halkides CJ; Wu YQ; Murray CJ
    Biochemistry; 1996 Dec; 35(49):15941-8. PubMed ID: 8961961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.