These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 32821926)

  • 1. Inferring efficiency of translation initiation and elongation from ribosome profiling.
    Szavits-Nossan J; Ciandrini L
    Nucleic Acids Res; 2020 Sep; 48(17):9478-9490. PubMed ID: 32821926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
    Ivanov IP; Shin BS; Loughran G; Tzani I; Young-Baird SK; Cao C; Atkins JF; Dever TE
    Mol Cell; 2018 Apr; 70(2):254-264.e6. PubMed ID: 29677493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
    Riba A; Di Nanni N; Mittal N; Arhné E; Schmidt A; Zavolan M
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15023-15032. PubMed ID: 31292258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-length ribosome density prediction by a multi-input and multi-output model.
    Tian T; Li S; Lang P; Zhao D; Zeng J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008842. PubMed ID: 33770074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress.
    Wu CC; Zinshteyn B; Wehner KA; Green R
    Mol Cell; 2019 Mar; 73(5):959-970.e5. PubMed ID: 30686592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE; Archer SK; Beilharz TH; Powell D; Preiss T
    Nat Protoc; 2017 Apr; 12(4):697-731. PubMed ID: 28253237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast.
    Guzikowski AR; Harvey AT; Zhang J; Zhu S; Begovich K; Cohn MH; Wilhelm JE; Zid BM
    RNA Biol; 2022; 19(1):636-649. PubMed ID: 35491906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. eIF5A Functions Globally in Translation Elongation and Termination.
    Schuller AP; Wu CC; Dever TE; Buskirk AR; Green R
    Mol Cell; 2017 Apr; 66(2):194-205.e5. PubMed ID: 28392174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.
    Hussmann JA; Patchett S; Johnson A; Sawyer S; Press WH
    PLoS Genet; 2015 Dec; 11(12):e1005732. PubMed ID: 26656907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning.
    Michel AM; Andreev DE; Baranov PV
    BMC Bioinformatics; 2014 Nov; 15(1):380. PubMed ID: 25413677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of elongation stalls and impact on gene expression in yeast.
    Hou W; Harjono V; Harvey AT; Subramaniam AR; Zid BM
    RNA; 2023 Dec; 29(12):1928-1938. PubMed ID: 37783489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ribosome in action: Tuning of translational efficiency and protein folding.
    Rodnina MV
    Protein Sci; 2016 Aug; 25(8):1390-406. PubMed ID: 27198711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel insights into gene expression regulation during meiosis revealed by translation elongation dynamics.
    Sabi R; Tuller T
    NPJ Syst Biol Appl; 2019; 5():12. PubMed ID: 30962948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments.
    Lareau LF; Hite DH; Hogan GJ; Brown PO
    Elife; 2014 May; 3():e01257. PubMed ID: 24842990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide Translation Profiling by Ribosome-Bound tRNA Capture.
    Chen CW; Tanaka M
    Cell Rep; 2018 Apr; 23(2):608-621. PubMed ID: 29642016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates.
    Ahmed N; Friedrich UA; Sormanni P; Ciryam P; Altman NS; Bukau B; Kramer G; O'Brien EP
    J Mol Biol; 2020 Dec; 432(24):166696. PubMed ID: 33152326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the uS9/yS16 C-terminal tail in translation initiation and elongation in Saccharomyces cerevisiae.
    Jindal S; Ghosh A; Ismail A; Singh N; Komar AA
    Nucleic Acids Res; 2019 Jan; 47(2):806-823. PubMed ID: 30481328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
    Ingolia NT; Ghaemmaghami S; Newman JR; Weissman JS
    Science; 2009 Apr; 324(5924):218-23. PubMed ID: 19213877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data.
    Gobet C; Naef F
    Methods; 2022 Jul; 203():10-16. PubMed ID: 34673173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.