These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 32821944)
1. The hydrogen threshold of obligately methyl-reducing methanogens. Feldewert C; Lang K; Brune A FEMS Microbiol Lett; 2020 Sep; 367(17):. PubMed ID: 32821944 [TBL] [Abstract][Full Text] [Related]
2. Several ways one goal-methanogenesis from unconventional substrates. Kurth JM; Op den Camp HJM; Welte CU Appl Microbiol Biotechnol; 2020 Aug; 104(16):6839-6854. PubMed ID: 32542472 [TBL] [Abstract][Full Text] [Related]
3. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. Sprenger WW; Hackstein JH; Keltjens JT FEMS Microbiol Ecol; 2007 May; 60(2):266-75. PubMed ID: 17367516 [TBL] [Abstract][Full Text] [Related]
4. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Horn MA; Matthies C; Küsel K; Schramm A; Drake HL Appl Environ Microbiol; 2003 Jan; 69(1):74-83. PubMed ID: 12513979 [TBL] [Abstract][Full Text] [Related]
5. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Berghuis BA; Yu FB; Schulz F; Blainey PC; Woyke T; Quake SR Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5037-5044. PubMed ID: 30814220 [TBL] [Abstract][Full Text] [Related]
6. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Zhang CJ; Pan J; Liu Y; Duan CH; Li M Microbiome; 2020 Jun; 8(1):94. PubMed ID: 32552798 [TBL] [Abstract][Full Text] [Related]
7. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Sorokin DY; Makarova KS; Abbas B; Ferrer M; Golyshin PN; Galinski EA; Ciordia S; Mena MC; Merkel AY; Wolf YI; van Loosdrecht MCM; Koonin EV Nat Microbiol; 2017 May; 2():17081. PubMed ID: 28555626 [TBL] [Abstract][Full Text] [Related]
8. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost. Ellenbogen JB; Borton MA; McGivern BB; Cronin DR; Hoyt DW; Freire-Zapata V; McCalley CK; Varner RK; Crill PM; Wehr RA; Chanton JP; Woodcroft BJ; Tfaily MM; Tyson GW; Rich VI; Wrighton KC mSystems; 2024 Jan; 9(1):e0069823. PubMed ID: 38063415 [TBL] [Abstract][Full Text] [Related]
9. CO Yin X; Wu W; Maeke M; Richter-Heitmann T; Kulkarni AC; Oni OE; Wendt J; Elvert M; Friedrich MW ISME J; 2019 Aug; 13(8):2107-2119. PubMed ID: 31040382 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of methanogens. Blaut M Antonie Van Leeuwenhoek; 1994; 66(1-3):187-208. PubMed ID: 7747931 [TBL] [Abstract][Full Text] [Related]
11. Unusual Butane- and Pentanetriol-Based Tetraether Lipids in Methanomassiliicoccus luminyensis, a Representative of the Seventh Order of Methanogens. Becker KW; Elling FJ; Yoshinaga MY; Söllinger A; Urich T; Hinrichs KU Appl Environ Microbiol; 2016 Aug; 82(15):4505-4516. PubMed ID: 27208108 [TBL] [Abstract][Full Text] [Related]
13. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Wu K; Zhou L; Tahon G; Liu L; Li J; Zhang J; Zheng F; Deng C; Han W; Bai L; Fu L; Dong X; Zhang C; Ettema TJG; Sousa DZ; Cheng L Nature; 2024 Aug; 632(8027):1124-1130. PubMed ID: 39048829 [TBL] [Abstract][Full Text] [Related]
14. Methylotrophic methanogens everywhere - physiology and ecology of novel players in global methane cycling. Söllinger A; Urich T Biochem Soc Trans; 2019 Dec; 47(6):1895-1907. PubMed ID: 31819955 [TBL] [Abstract][Full Text] [Related]
15. Energy conservation in the gut microbe Methanomassiliicoccus luminyensis is based on membrane-bound ferredoxin oxidation coupled to heterodisulfide reduction. Kröninger L; Steiniger F; Berger S; Kraus S; Welte CU; Deppenmeier U FEBS J; 2019 Oct; 286(19):3831-3843. PubMed ID: 31162794 [TBL] [Abstract][Full Text] [Related]
16. Methanogenesis in the Digestive Tracts of the Tropical Millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae). Horváthová T; Šustr V; Chroňáková A; Semanová S; Lang K; Dietrich C; Hubáček T; Ardestani MM; Lara AC; Brune A; Šimek M Appl Environ Microbiol; 2021 Jul; 87(15):e0061421. PubMed ID: 34020937 [TBL] [Abstract][Full Text] [Related]
17. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus methanoplasma termitum”. Lang K; Schuldes J; Klingl A; Poehlein A; Daniel R; Brunea A Appl Environ Microbiol; 2015 Feb; 81(4):1338-52. PubMed ID: 25501486 [TBL] [Abstract][Full Text] [Related]
18. Methanogenesis at low temperatures by microflora of tundra wetland soil. Kotsyurbenko OR; Nozhevnikova AN; Soloviova TI; Zavarzin GA Antonie Van Leeuwenhoek; 1996 Jan; 69(1):75-86. PubMed ID: 8678482 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments. Finke N; Hoehler TM; Jørgensen BB Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276 [TBL] [Abstract][Full Text] [Related]
20. Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis. Thomas CM; Taib N; Gribaldo S; Borrel G ISME Commun; 2021 Sep; 1(1):47. PubMed ID: 37938279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]