BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32822018)

  • 1. Modified Forms of Cytosine in Eukaryotes: DNA (De)methylation and Beyond.
    Eleftheriou M; Ruzov A
    Methods Mol Biol; 2021; 2198():3-13. PubMed ID: 32822018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs mediated targeting on the Yin-yang dynamics of DNA methylation in disease and development.
    Tu J; Liao J; Luk AC; Tang NL; Chan WY; Lee TL
    Int J Biochem Cell Biol; 2015 Oct; 67():115-20. PubMed ID: 25979370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for Noncytosine Epigenetic DNA Modifications in Multicellular Eukaryotes: An Overview.
    Lowe P; Olinski R; Ruzov A
    Methods Mol Biol; 2021; 2198():15-25. PubMed ID: 32822019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.
    Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D
    Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications.
    Ren R; Horton JR; Hong S; Cheng X
    Adv Exp Med Biol; 2022; 1389():295-315. PubMed ID: 36350515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications.
    Hong S; Cheng X
    Adv Exp Med Biol; 2016; 945():321-341. PubMed ID: 27826845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes.
    Meng WY; Wang ZX; Zhang Y; Hou Y; Xue JH
    J Biol Chem; 2024 Apr; 300(4):106791. PubMed ID: 38403247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation.
    Abakir A; Alenezi F; Ruzov A
    Methods Mol Biol; 2021; 2198():311-319. PubMed ID: 32822041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-Genome Mapping of Epigenetic Modification of 5-Formylcytosine at Single-Base Resolution by Chemical Labeling Enrichment and Deamination Sequencing.
    Ding JH; Li G; Xiong J; Liu FL; Xie NB; Ji TT; Wang M; Guo X; Feng YQ; Ci W; Yuan BF
    Anal Chem; 2024 Mar; 96(11):4726-4735. PubMed ID: 38450632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation.
    Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ
    Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charting oxidized methylcytosines at base resolution.
    Wu H; Zhang Y
    Nat Struct Mol Biol; 2015 Sep; 22(9):656-61. PubMed ID: 26333715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic Modifications of Cytosine: Biophysical Properties, Regulation, and Function in Mammalian DNA.
    Hardwick JS; Lane AN; Brown T
    Bioessays; 2018 Mar; 40(3):. PubMed ID: 29369386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA demethylation pathways: Additional players and regulators.
    Bochtler M; Kolano A; Xu GL
    Bioessays; 2017 Jan; 39(1):1-13. PubMed ID: 27859411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-Specific Differences in DNA Modifications (5-Hydroxymethylcytosine, 5-Formylcytosine, 5-Carboxylcytosine and 5-Hydroxymethyluracil) and Their Interrelationships.
    Gackowski D; Zarakowska E; Starczak M; Modrzejewska M; Olinski R
    PLoS One; 2015; 10(12):e0144859. PubMed ID: 26660343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TET proteins and 5-methylcytosine oxidation in the immune system.
    Tsagaratou A; Rao A
    Cold Spring Harb Symp Quant Biol; 2013; 78():1-10. PubMed ID: 24619230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive/negative ion-switching-based LC-MS/MS method for quantification of cytosine derivatives produced by the TET-family 5-methylcytosine dioxygenases.
    Dey AS; Ayon NJ; Bhattacharya C; Gutheil WG; Mukherji M
    Biol Methods Protoc; 2020; 5(1):bpaa019. PubMed ID: 33376805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer.
    Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD
    Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunochemical Detection of Modified Species of Cytosine in Plant Tissues.
    Viejo M; Yakovlev I; Fossdal CG
    Methods Mol Biol; 2021; 2198():209-216. PubMed ID: 32822034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.