BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32822041)

  • 21. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword.
    Ito S; Kuraoka I
    DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics.
    Neri F; Incarnato D; Krepelova A; Rapelli S; Anselmi F; Parlato C; Medana C; Dal Bello F; Oliviero S
    Cell Rep; 2015 Feb; 10(5):674-683. PubMed ID: 25660018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential functional roles of DNA demethylation intermediates.
    Song CX; He C
    Trends Biochem Sci; 2013 Oct; 38(10):480-4. PubMed ID: 23932479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex.
    Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D
    Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA.
    Lu X; Song CX; Szulwach K; Wang Z; Weidenbacher P; Jin P; He C
    J Am Chem Soc; 2013 Jun; 135(25):9315-7. PubMed ID: 23758547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
    Wu H; Zhang Y
    Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay.
    Chowdhury B; Cho IH; Hahn N; Irudayaraj J
    Anal Chim Acta; 2014 Dec; 852():212-7. PubMed ID: 25441900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation.
    Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ
    Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated
    Ramsawhook A; Lewis L; Coyle B; Ruzov A
    Clin Epigenetics; 2017; 9():18. PubMed ID: 28228863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification.
    Dietzsch J; Feineis D; Höbartner C
    FEBS Lett; 2018 Jun; 592(12):2032-2047. PubMed ID: 29683490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of Low-Abundance DNA Modifications Using Signal Amplification-Based Immunocytochemistry.
    Abakir A; Ruzov A
    Methods Mol Biol; 2021; 2198():169-181. PubMed ID: 32822031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Oxidation and deamination of nucleobases as an epigenetic tool].
    Guz J; Jurgowiak M; Oliński R
    Postepy Hig Med Dosw (Online); 2012 May; 66():275-86. PubMed ID: 22706113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification of TET Proteins.
    Huang Z; Yu J; Johnson J; Jin SG; Pfeifer GP
    Methods Mol Biol; 2021; 2272():225-237. PubMed ID: 34009617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global DNA 5-Hydroxymethylcytosine and 5-Formylcytosine Contents Are Decreased in the Early Stage of Hepatocellular Carcinoma.
    Liu J; Jiang J; Mo J; Liu D; Cao D; Wang H; He Y; Wang H
    Hepatology; 2019 Jan; 69(1):196-208. PubMed ID: 30070373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Are there specific readers of oxidized 5-methylcytosine bases?
    Song J; Pfeifer GP
    Bioessays; 2016 Oct; 38(10):1038-47. PubMed ID: 27480808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Function of TET Enzymes.
    Yin X; Hu L; Xu Y
    Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C/EBPβ (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide.
    Sayeed SK; Zhao J; Sathyanarayana BK; Golla JP; Vinson C
    Biochim Biophys Acta; 2015 Jun; 1849(6):583-9. PubMed ID: 25779641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.