These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 32822041)
21. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
22. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. Neri F; Incarnato D; Krepelova A; Rapelli S; Anselmi F; Parlato C; Medana C; Dal Bello F; Oliviero S Cell Rep; 2015 Feb; 10(5):674-683. PubMed ID: 25660018 [TBL] [Abstract][Full Text] [Related]
23. Development of a rapid mass spectrometric method for the analysis of ten-eleven translocation enzymes. Graves C; Islam K Methods Enzymol; 2024; 703():87-120. PubMed ID: 39261005 [TBL] [Abstract][Full Text] [Related]
24. Potential functional roles of DNA demethylation intermediates. Song CX; He C Trends Biochem Sci; 2013 Oct; 38(10):480-4. PubMed ID: 23932479 [TBL] [Abstract][Full Text] [Related]
25. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Wang L; Zhou Y; Xu L; Xiao R; Lu X; Chen L; Chong J; Li H; He C; Fu XD; Wang D Nature; 2015 Jul; 523(7562):621-5. PubMed ID: 26123024 [TBL] [Abstract][Full Text] [Related]
26. Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. Lu X; Song CX; Szulwach K; Wang Z; Weidenbacher P; Jin P; He C J Am Chem Soc; 2013 Jun; 135(25):9315-7. PubMed ID: 23758547 [TBL] [Abstract][Full Text] [Related]
27. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Wu H; Zhang Y Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206 [TBL] [Abstract][Full Text] [Related]
28. Structural insight into substrate preference for TET-mediated oxidation. Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525 [TBL] [Abstract][Full Text] [Related]
29. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay. Chowdhury B; Cho IH; Hahn N; Irudayaraj J Anal Chim Acta; 2014 Dec; 852():212-7. PubMed ID: 25441900 [TBL] [Abstract][Full Text] [Related]
30. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494 [TBL] [Abstract][Full Text] [Related]
31. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016 [TBL] [Abstract][Full Text] [Related]
32. Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated Ramsawhook A; Lewis L; Coyle B; Ruzov A Clin Epigenetics; 2017; 9():18. PubMed ID: 28228863 [TBL] [Abstract][Full Text] [Related]
33. Chemoselective labeling and site-specific mapping of 5-formylcytosine as a cellular nucleic acid modification. Dietzsch J; Feineis D; Höbartner C FEBS Lett; 2018 Jun; 592(12):2032-2047. PubMed ID: 29683490 [TBL] [Abstract][Full Text] [Related]
34. Detection of Low-Abundance DNA Modifications Using Signal Amplification-Based Immunocytochemistry. Abakir A; Ruzov A Methods Mol Biol; 2021; 2198():169-181. PubMed ID: 32822031 [TBL] [Abstract][Full Text] [Related]
35. [Oxidation and deamination of nucleobases as an epigenetic tool]. Guz J; Jurgowiak M; Oliński R Postepy Hig Med Dosw (Online); 2012 May; 66():275-86. PubMed ID: 22706113 [TBL] [Abstract][Full Text] [Related]
36. Purification of TET Proteins. Huang Z; Yu J; Johnson J; Jin SG; Pfeifer GP Methods Mol Biol; 2021; 2272():225-237. PubMed ID: 34009617 [TBL] [Abstract][Full Text] [Related]
37. Global DNA 5-Hydroxymethylcytosine and 5-Formylcytosine Contents Are Decreased in the Early Stage of Hepatocellular Carcinoma. Liu J; Jiang J; Mo J; Liu D; Cao D; Wang H; He Y; Wang H Hepatology; 2019 Jan; 69(1):196-208. PubMed ID: 30070373 [TBL] [Abstract][Full Text] [Related]
38. Are there specific readers of oxidized 5-methylcytosine bases? Song J; Pfeifer GP Bioessays; 2016 Oct; 38(10):1038-47. PubMed ID: 27480808 [TBL] [Abstract][Full Text] [Related]
39. Structure and Function of TET Enzymes. Yin X; Hu L; Xu Y Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513 [TBL] [Abstract][Full Text] [Related]
40. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Qian H; Zhao J; Yang X; Wu S; An Y; Qu Y; Li Z; Ge H; Li E; Qi W Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jun; 1866(6):158919. PubMed ID: 33684567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]