These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32822046)

  • 1. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors.
    Buchmuller B; Muñoz-López Á; Gieß M; Summerer D
    Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recognition of
    Rathi P; Maurer S; Summerer D
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1748):. PubMed ID: 29685980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Human Genomic DNA Sequences with Expanded Nucleobase Selectivity.
    Rathi P; Maurer S; Kubik G; Summerer D
    J Am Chem Soc; 2016 Aug; 138(31):9910-8. PubMed ID: 27429302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.
    Kubik G; Summerer D
    Chembiochem; 2016 Jun; 17(11):975-80. PubMed ID: 26972580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete, Programmable Decoding of Oxidized 5-Methylcytosine Nucleobases in DNA by Chemoselective Blockage of Universal Transcription-Activator-Like Effector Repeats.
    Gieß M; Witte A; Jasper J; Koch O; Summerer D
    J Am Chem Soc; 2018 May; 140(18):5904-5908. PubMed ID: 29677450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors.
    Tsuji S; Imanishi M
    Adv Drug Deliv Rev; 2019 Jul; 147():59-65. PubMed ID: 31513826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.
    Rathi P; Witte A; Summerer D
    Sci Rep; 2017 Nov; 7(1):15067. PubMed ID: 29118409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine.
    Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D
    Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition.
    Zhang Y; Liu L; Guo S; Song J; Zhu C; Yue Z; Wei W; Yi C
    Nat Commun; 2017 Oct; 8(1):901. PubMed ID: 29026078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interrogating Key Positions of Size-Reduced TALE Repeats Reveals a Programmable Sensor of 5-Carboxylcytosine.
    Maurer S; Giess M; Koch O; Summerer D
    ACS Chem Biol; 2016 Dec; 11(12):3294-3299. PubMed ID: 27978710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable Protein-DNA Cross-Linking for the Direct Capture and Quantification of 5-Formylcytosine.
    Gieß M; Muñoz-López Á; Buchmuller B; Kubik G; Summerer D
    J Am Chem Soc; 2019 Jun; 141(24):9453-9457. PubMed ID: 31180648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The N6-Position of Adenine Is a Blind Spot for TAL-Effectors That Enables Effective Binding of Methylated and Fluorophore-Labeled DNA.
    Flade S; Jasper J; Gieß M; Juhasz M; Dankers A; Kubik G; Koch O; Weinhold E; Summerer D
    ACS Chem Biol; 2017 Jul; 12(7):1719-1725. PubMed ID: 28493677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving single-nucleotide resolution of 5-methylcytosine detection with TALEs.
    Kubik G; Summerer D
    Chembiochem; 2015 Jan; 16(2):228-31. PubMed ID: 25522353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimerization Enables Gene Synthesis and Lentiviral Delivery of Customizable TALE-Based Effectors.
    Fang Y; Stroukov W; Cathomen T; Mussolino C
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of TALE-Based Designer Epigenome Modifiers.
    Nitsch S; Mussolino C
    Methods Mol Biol; 2018; 1767():89-109. PubMed ID: 29524130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Insights into the Specific Recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL Effectors.
    Liu L; Zhang Y; Liu M; Wei W; Yi C; Peng J
    J Mol Biol; 2020 Feb; 432(4):1035-1047. PubMed ID: 31863750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable tools for targeted analysis of epigenetic DNA modifications.
    Buchmuller B; Jung A; Muñoz-López Á; Summerer D
    Curr Opin Chem Biol; 2021 Aug; 63():1-10. PubMed ID: 33588304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging-Based In Situ Analysis of 5-Methylcytosine at Low Repetitive Single Gene Loci with Transcription-Activator-Like Effector Probes.
    Jung A; Munõz-López Á; Buchmuller BC; Banerjee S; Summerer D
    ACS Chem Biol; 2023 Feb; 18(2):230-236. PubMed ID: 36693632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing.
    Waryah CB; Moses C; Arooj M; Blancafort P
    Methods Mol Biol; 2018; 1767():19-63. PubMed ID: 29524128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable and highly resolved in vitro detection of 5-methylcytosine by TALEs.
    Kubik G; Schmidt MJ; Penner JE; Summerer D
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):6002-6. PubMed ID: 24801054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.