BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 32822046)

  • 1. Design and Application of DNA Modification-Specific Transcription-Activator-Like Effectors.
    Buchmuller B; Muñoz-López Á; Gieß M; Summerer D
    Methods Mol Biol; 2021; 2198():381-399. PubMed ID: 32822046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered TALE Repeats for Enhanced Imaging-Based Analysis of Cellular 5-Methylcytosine.
    Muñoz-López Á; Jung A; Buchmuller B; Wolffgramm J; Maurer S; Witte A; Summerer D
    Chembiochem; 2021 Feb; 22(4):645-651. PubMed ID: 32991020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging-Based In Situ Analysis of 5-Methylcytosine at Low Repetitive Single Gene Loci with Transcription-Activator-Like Effector Probes.
    Jung A; Munõz-López Á; Buchmuller BC; Banerjee S; Summerer D
    ACS Chem Biol; 2023 Feb; 18(2):230-236. PubMed ID: 36693632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and Rapid Assembly of TALE Modules Based on the Degeneracy of the Codons and Trimer Repeats.
    Cheng L; Zhou X; Zheng Y; Tang C; Liu Y; Zheng S; Liu Y; Zhou J; Li C; Chen M; Lai L; Zou Q
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible TALEs for an expanded use in gene activation, virulence and scaffold engineering.
    Becker S; Mücke S; Grau J; Boch J
    Nucleic Acids Res; 2022 Feb; 50(4):2387-2400. PubMed ID: 35150566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic features improve TALE target prediction.
    Erkes A; Mücke S; Reschke M; Boch J; Grau J
    BMC Genomics; 2021 Dec; 22(1):914. PubMed ID: 34965853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of the editing window of C-to-T TALE base editors.
    Feola M; Pulicani S; Tkach D; Boyne A; Hong R; Mayer L; Duclert A; Duchateau P; Juillerat A
    Sci Rep; 2024 Jun; 14(1):12870. PubMed ID: 38834632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved USER cloning for TALE assembly and its application to base editing.
    Zhou J; Wang J; Chen F; Zhuang Z; Chen M; Yang Y; Luo X; Tang C; Zhou X; Chi Y; Wang J; He Y; Zhang K; Zou Q
    PLoS One; 2023; 18(8):e0289509. PubMed ID: 37540669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized displacement by transcription activator-like effectors for regulatory circuits.
    Lebar T; Verbič A; Ljubetič A; Jerala R
    Nat Chem Biol; 2019 Jan; 15(1):80-87. PubMed ID: 30455466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the transcription activator-like effector augments transcriptional regulation by another transcription factor.
    Leben K; Strmšek Ž; Lebar T; Verbič A; Dragovan M; Omersa N; Anderluh G; Jerala R
    Nucleic Acids Res; 2022 Jun; 50(11):6562-6574. PubMed ID: 35670660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Manipulation of Transposable and Repetitive Elements.
    Jachowicz JW
    Methods Mol Biol; 2023; 2607():355-368. PubMed ID: 36449170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TALE.Sense: A Versatile DNA Sensor Platform for Live Mammalian Cells.
    Taghbalout A; Jillette N; Cheng AW
    ACS Synth Biol; 2022 Jan; 11(1):116-124. PubMed ID: 34931802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Transcriptional Activator-Like Effector Protein to Accurately Discriminate Single Nucleotide Difference.
    Sakono M; Oya T; Aoki M
    Chembiochem; 2023 Feb; 24(3):e202200486. PubMed ID: 36409599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Referencing Allows Identification of Epigenetic Cytosine Modifications by Single-Molecule Hybridization Kinetics and Superresolution DNA-PAINT Microscopy.
    Bauer J; Reichl A; Tinnefeld P
    ACS Nano; 2024 Jan; 18(2):1496-1503. PubMed ID: 38157484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial gene control by DNA looping using engineered dimeric transcription activator like effector (TALE) proteins.
    Becker NA; Schwab TL; Clark KJ; Maher LJ
    Nucleic Acids Res; 2018 Mar; 46(5):2690-2696. PubMed ID: 29390154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenomic Modifications in Modern and Ancient Genomes.
    Niiranen L; Leciej D; Edlund H; Bernhardsson C; Fraser M; Quinto FS; Herzig KH; Jakobsson M; Walkowiak J; Thalmann O
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoded, click-reactive DNA-binding domains for programmable capture of specific chromatin segments.
    Witte A; Muñoz-López Á; Metz M; Schweiger MR; Janning P; Summerer D
    Chem Sci; 2020 Oct; 11(46):12506-12511. PubMed ID: 34123231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the sequence diversity of TALE-like repeats to vary the strength of dTALE-promoter interactions.
    de Lange O; Schandry N; Wunderlich M; Berendzen KW; Lahaye T
    Synth Biol (Oxf); 2017 Jan; 2(1):ysx004. PubMed ID: 32995505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic CpG duplex marks probed by an evolved DNA reader via a well-tempered conformational plasticity.
    Singh H; Das CK; Buchmuller BC; Schäfer LV; Summerer D; Linser R
    Nucleic Acids Res; 2023 Jul; 51(12):6495-6506. PubMed ID: 36919612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet.
    Viner C; Ishak CA; Johnson J; Walker NJ; Shi H; Sjöberg-Herrera MK; Shen SY; Lardo SM; Adams DJ; Ferguson-Smith AC; De Carvalho DD; Hainer SJ; Bailey TL; Hoffman MM
    Genome Biol; 2024 Jan; 25(1):11. PubMed ID: 38191487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.