These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 32822055)
1. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images. Zhang J; Jin J; Ai Y; Zhu K; Xiao C; Xie C; Jin X Eur Radiol; 2021 Feb; 31(2):1022-1028. PubMed ID: 32822055 [TBL] [Abstract][Full Text] [Related]
2. Differentiating Primary Tumors for Brain Metastasis with Integrated Radiomics from Multiple Imaging Modalities. Cao G; Zhang J; Lei X; Yu B; Ai Y; Zhang Z; Xie C; Jin X Dis Markers; 2022; 2022():5147085. PubMed ID: 36199819 [TBL] [Abstract][Full Text] [Related]
3. Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model. Gong J; Wang T; Wang Z; Chu X; Hu T; Li M; Peng W; Feng F; Tong T; Gu Y Cancer Imaging; 2024 Jan; 24(1):1. PubMed ID: 38167564 [TBL] [Abstract][Full Text] [Related]
4. Improved Prediction of Epidermal Growth Factor Receptor Status by Combined Radiomics of Primary Nonsmall-Cell Lung Cancer and Distant Metastasis. Hu Y; Geng Y; Wang H; Chen H; Wang Z; Fu L; Huang B; Jiang W J Comput Assist Tomogr; 2024 Sep-Oct 01; 48(5):780-788. PubMed ID: 38498926 [TBL] [Abstract][Full Text] [Related]
5. Radiomics for Classification of Lung Cancer Histological Subtypes Based on Nonenhanced Computed Tomography. E L; Lu L; Li L; Yang H; Schwartz LH; Zhao B Acad Radiol; 2019 Sep; 26(9):1245-1252. PubMed ID: 30502076 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of Lung Metastases Originated From Different Primary Tumors Using Radiomics Features Based on CT Imaging. Shang H; Li J; Jiao T; Fang C; Li K; Yin D; Zeng Q Acad Radiol; 2023 Jan; 30(1):40-46. PubMed ID: 35577699 [TBL] [Abstract][Full Text] [Related]
7. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features. Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676 [TBL] [Abstract][Full Text] [Related]
8. Multiregional radiomics of brain metastasis can predict response to EGFR-TKI in metastatic NSCLC. Fan Y; Wang X; Dong Y; Cui E; Wang H; Sun X; Su J; Luo Y; Yu T; Jiang X Eur Radiol; 2023 Nov; 33(11):7902-7912. PubMed ID: 37142868 [TBL] [Abstract][Full Text] [Related]
9. CT radiomics analysis of lung cancers: Differentiation of squamous cell carcinoma from adenocarcinoma, a correlative study with FDG uptake. Tomori Y; Yamashiro T; Tomita H; Tsubakimoto M; Ishigami K; Atsumi E; Murayama S Eur J Radiol; 2020 Jul; 128():109032. PubMed ID: 32361604 [TBL] [Abstract][Full Text] [Related]
10. Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature. Liu Z; Yin R; Ma W; Li Z; Guo Y; Wu H; Lin Y; Chekhonin VP; Peltzer K; Li H; Mao M; Jian X; Zhang C BMC Med Imaging; 2024 Aug; 24(1):203. PubMed ID: 39103775 [TBL] [Abstract][Full Text] [Related]
11. Machine learning for differentiating lung squamous cell cancer from adenocarcinoma using Clinical-Metabolic characteristics and 18F-FDG PET/CT radiomics. Zhang Y; Liu H; Chang C; Yin Y; Wang R PLoS One; 2024; 19(4):e0300170. PubMed ID: 38568892 [TBL] [Abstract][Full Text] [Related]
12. Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with Zhu Y; Cong S; Zhang Q; Huang Z; Yao X; Cheng Y; Liang D; Hu Z; Shao D Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39214122 [No Abstract] [Full Text] [Related]
13. Application of contrast-enhanced CT radiomics in prediction of early recurrence of locally advanced oesophageal squamous cell carcinoma after trimodal therapy. Tang S; Ou J; Liu J; Wu YP; Wu CQ; Chen TW; Zhang XM; Li R; Tang MJ; Yang LQ; Tan BG; Lu FL; Hu J Cancer Imaging; 2021 May; 21(1):38. PubMed ID: 34039403 [TBL] [Abstract][Full Text] [Related]
14. CT-based radiomics for predicting brain metastases as the first failure in patients with curatively resected locally advanced non-small cell lung cancer. Sun F; Chen Y; Chen X; Sun X; Xing L Eur J Radiol; 2021 Jan; 134():109411. PubMed ID: 33246270 [TBL] [Abstract][Full Text] [Related]
15. Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer. Cong M; Feng H; Ren JL; Xu Q; Cong L; Hou Z; Wang YY; Shi G Lung Cancer; 2020 Jan; 139():73-79. PubMed ID: 31743889 [TBL] [Abstract][Full Text] [Related]
16. Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer. Zheng H; Zheng Q; Jiang M; Han C; Yi J; Ai Y; Xie C; Jin X Eur J Radiol; 2022 Sep; 154():110393. PubMed ID: 35679700 [TBL] [Abstract][Full Text] [Related]
17. Application of a Comprehensive Model Based on CT Radiomics and Clinical Features for Postoperative Recurrence Risk Prediction in Non-small Cell Lung Cancer. Wang P; Luo Z; Luo C; Wang T Acad Radiol; 2024 Jun; 31(6):2579-2590. PubMed ID: 38172022 [TBL] [Abstract][Full Text] [Related]
18. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Shen H; Chen L; Liu K; Zhao K; Li J; Yu L; Ye H; Zhu W Quant Imaging Med Surg; 2021 Jul; 11(7):2918-2932. PubMed ID: 34249623 [TBL] [Abstract][Full Text] [Related]
19. Computed tomography-based radiomics and clinical-genetic features for brain metastasis prediction in patients with stage III/IV epidermal growth factor receptor-mutant non-small-cell lung cancer. Zheng M; Sun X; Qi H; Zhang M; Xing L Thorac Cancer; 2024 Sep; 15(27):1919-1928. PubMed ID: 39101254 [TBL] [Abstract][Full Text] [Related]
20. Application of radiomics based on chest CT-enhanced dual-phase imaging in the immunotherapy of non-small cell lung cancer. Ma ZP; Li XL; Gao K; Zhang TL; Wang HD; Zhao YX J Xray Sci Technol; 2023; 31(6):1333-1340. PubMed ID: 37840466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]