These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 32822073)
1. Comparing the binding properties of peptides mimicking the Envelope protein of SARS-CoV and SARS-CoV-2 to the PDZ domain of the tight junction-associated PALS1 protein. Toto A; Ma S; Malagrinò F; Visconti L; Pagano L; Stromgaard K; Gianni S Protein Sci; 2020 Oct; 29(10):2038-2042. PubMed ID: 32822073 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of coronavirus E protein interactions with human PALS1 PDZ domain. Javorsky A; Humbert PO; Kvansakul M Commun Biol; 2021 Jun; 4(1):724. PubMed ID: 34117354 [TBL] [Abstract][Full Text] [Related]
3. Improved binding of SARS-CoV-2 Envelope protein to tight junction-associated PALS1 could play a key role in COVID-19 pathogenesis. De Maio F; Lo Cascio E; Babini G; Sali M; Della Longa S; Tilocca B; Roncada P; Arcovito A; Sanguinetti M; Scambia G; Urbani A Microbes Infect; 2020; 22(10):592-597. PubMed ID: 32891874 [TBL] [Abstract][Full Text] [Related]
4. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Teoh KT; Siu YL; Chan WL; Schlüter MA; Liu CJ; Peiris JS; Bruzzone R; Margolis B; Nal B Mol Biol Cell; 2010 Nov; 21(22):3838-52. PubMed ID: 20861307 [TBL] [Abstract][Full Text] [Related]
5. Functional Pangenome Analysis Shows Key Features of E Protein Are Preserved in SARS and SARS-CoV-2. Alam I; Kamau AA; Kulmanov M; Jaremko Ł; Arold ST; Pain A; Gojobori T; Duarte CM Front Cell Infect Microbiol; 2020; 10():405. PubMed ID: 32850499 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Chai J; Cai Y; Pang C; Wang L; McSweeney S; Shanklin J; Liu Q Nat Commun; 2021 Jun; 12(1):3433. PubMed ID: 34103506 [TBL] [Abstract][Full Text] [Related]
7. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Behloul N; Baha S; Shi R; Meng J Virus Res; 2020 Sep; 286():198058. PubMed ID: 32531235 [TBL] [Abstract][Full Text] [Related]
8. Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain. Mukherjee S; Bhattacharyya D; Bhunia A Biophys Chem; 2020 Nov; 266():106452. PubMed ID: 32818817 [TBL] [Abstract][Full Text] [Related]
9. Protein Surface Printer for Exploring Protein Domains. Li Y; Qiao B; Olvera de la Cruz M J Chem Inf Model; 2020 Oct; 60(10):5255-5264. PubMed ID: 32846088 [TBL] [Abstract][Full Text] [Related]
10. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. Kandeel M; Ibrahim A; Fayez M; Al-Nazawi M J Med Virol; 2020 Jun; 92(6):660-666. PubMed ID: 32159237 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Tai W; He L; Zhang X; Pu J; Voronin D; Jiang S; Zhou Y; Du L Cell Mol Immunol; 2020 Jun; 17(6):613-620. PubMed ID: 32203189 [TBL] [Abstract][Full Text] [Related]
12. SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway. Bortolotti D; Gentili V; Rizzo S; Rotola A; Rizzo R Cells; 2020 Aug; 9(9):. PubMed ID: 32859121 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Ali A; Vijayan R Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162 [TBL] [Abstract][Full Text] [Related]
14. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Bhowmik D; Nandi R; Jagadeesan R; Kumar N; Prakash A; Kumar D Infect Genet Evol; 2020 Oct; 84():104451. PubMed ID: 32640381 [TBL] [Abstract][Full Text] [Related]
15. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Yoshimoto FK Protein J; 2020 Jun; 39(3):198-216. PubMed ID: 32447571 [TBL] [Abstract][Full Text] [Related]
16. Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics? Bianchi M; Benvenuto D; Giovanetti M; Angeletti S; Ciccozzi M; Pascarella S Biomed Res Int; 2020; 2020():4389089. PubMed ID: 32596311 [TBL] [Abstract][Full Text] [Related]
17. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Satarker S; Nampoothiri M Arch Med Res; 2020 Aug; 51(6):482-491. PubMed ID: 32493627 [TBL] [Abstract][Full Text] [Related]
18. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. Jimenez-Guardeño JM; Nieto-Torres JL; DeDiego ML; Regla-Nava JA; Fernandez-Delgado R; Castaño-Rodriguez C; Enjuanes L PLoS Pathog; 2014 Aug; 10(8):e1004320. PubMed ID: 25122212 [TBL] [Abstract][Full Text] [Related]
19. Different electrostatic forces drive the binding kinetics of SARS-CoV, SARS-CoV-2 and MERS-CoV Envelope proteins with the PDZ2 domain of ZO1. Pennacchietti V; Toto A Sci Rep; 2023 May; 13(1):7906. PubMed ID: 37193746 [TBL] [Abstract][Full Text] [Related]
20. SARS-CoV-2 envelope protein topology in eukaryotic membranes. Duart G; García-Murria MJ; Grau B; Acosta-Cáceres JM; Martínez-Gil L; Mingarro I Open Biol; 2020 Sep; 10(9):200209. PubMed ID: 32898469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]