These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32822098)

  • 1. Alpha oscillations do not implement gain control in early visual cortex but rather gating in parieto-occipital regions.
    Zhigalov A; Jensen O
    Hum Brain Mapp; 2020 Dec; 41(18):5176-5186. PubMed ID: 32822098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.
    Samaha J; Gosseries O; Postle BR
    J Neurosci; 2017 Mar; 37(11):2824-2833. PubMed ID: 28179556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateralization in Alpha-Band Oscillations Predicts the Locus and Spatial Distribution of Attention.
    Ikkai A; Dandekar S; Curtis CE
    PLoS One; 2016; 11(5):e0154796. PubMed ID: 27144717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception.
    Capilla A; Schoffelen JM; Paterson G; Thut G; Gross J
    Cereb Cortex; 2014 Feb; 24(2):550-61. PubMed ID: 23118197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No Evidence for a Role of Spatially Modulated α-Band Activity in Tactile Remapping and Short-Latency, Overt Orienting Behavior.
    Ossandón JP; König P; Heed T
    J Neurosci; 2020 Nov; 40(47):9088-9102. PubMed ID: 33087476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indexing the graded allocation of visuospatial attention using anticipatory alpha oscillations.
    Gould IC; Rushworth MF; Nobre AC
    J Neurophysiol; 2011 Mar; 105(3):1318-26. PubMed ID: 21228304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional modulation of oscillatory activity in human visual cortex.
    Yamagishi N; Callan DE; Goda N; Anderson SJ; Yoshida Y; Kawato M
    Neuroimage; 2003 Sep; 20(1):98-113. PubMed ID: 14527573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha and alpha-beta phase synchronization mediate the recruitment of the visuospatial attention network through the Superior Longitudinal Fasciculus.
    D'Andrea A; Chella F; Marshall TR; Pizzella V; Romani GL; Jensen O; Marzetti L
    Neuroimage; 2019 Mar; 188():722-732. PubMed ID: 30605784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of alpha activity in the parieto-occipital area by distractors during a visuospatial working memory task: a magnetoencephalographic study.
    Ichihara-Takeda S; Yazawa S; Murahara T; Toyoshima T; Shinozaki J; Ishiguro M; Shiraishi H; Ikeda N; Matsuyama K; Funahashi S; Nagamine T
    J Cogn Neurosci; 2015 Mar; 27(3):453-63. PubMed ID: 25244117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial attention modulates visual gamma oscillations across the human ventral stream.
    Magazzini L; Singh KD
    Neuroimage; 2018 Feb; 166():219-229. PubMed ID: 29104149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down alpha oscillatory network interactions during visuospatial attention orienting.
    Doesburg SM; Bedo N; Ward LM
    Neuroimage; 2016 May; 132():512-519. PubMed ID: 26952198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attentional selection of location and modality in vision and touch modulates low-frequency activity in associated sensory cortices.
    Bauer M; Kennett S; Driver J
    J Neurophysiol; 2012 May; 107(9):2342-51. PubMed ID: 22323628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.
    Bauer M; Oostenveld R; Peeters M; Fries P
    J Neurosci; 2006 Jan; 26(2):490-501. PubMed ID: 16407546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating by induced Α-Γ asynchrony in selective attention.
    Pascucci D; Hervais-Adelman A; Plomp G
    Hum Brain Mapp; 2018 Oct; 39(10):3854-3870. PubMed ID: 29797747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing cortical excitability using rapid frequency tagging.
    Zhigalov A; Herring JD; Herpers J; Bergmann TO; Jensen O
    Neuroimage; 2019 Jul; 195():59-66. PubMed ID: 30930309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.
    Gulbinaite R; İlhan B; VanRullen R
    J Neurosci; 2017 Jul; 37(30):7219-7230. PubMed ID: 28663196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontoparietal Networks Mediate the Behavioral Impact of Alpha Inhibition in Visual Cortex.
    Wiesman AI; Groff BR; Wilson TW
    Cereb Cortex; 2019 Jul; 29(8):3505-3513. PubMed ID: 30215685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemispheric Asymmetry of Globus Pallidus Relates to Alpha Modulation in Reward-Related Attentional Tasks.
    Mazzetti C; Staudigl T; Marshall TR; Zumer JM; Fallon SJ; Jensen O
    J Neurosci; 2019 Nov; 39(46):9221-9236. PubMed ID: 31578234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.