These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32822401)
1. Using machine learning for predicting cervical cancer from Swedish electronic health records by mining hierarchical representations. Weegar R; Sundström K PLoS One; 2020; 15(8):e0237911. PubMed ID: 32822401 [TBL] [Abstract][Full Text] [Related]
2. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding. Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736 [TBL] [Abstract][Full Text] [Related]
3. Finding Cervical Cancer Symptoms in Swedish Clinical Text using a Machine Learning Approach and NegEx. Weegar R; Kvist M; Sundström K; Brunak S; Dalianis H AMIA Annu Symp Proc; 2015; 2015():1296-305. PubMed ID: 26958270 [TBL] [Abstract][Full Text] [Related]
4. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches. Weegar R; Pérez A; Casillas A; Oronoz M BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 7):274. PubMed ID: 31865900 [TBL] [Abstract][Full Text] [Related]
6. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
7. LSTM Model for Prediction of Heart Failure in Big Data. Maragatham G; Devi S J Med Syst; 2019 Mar; 43(5):111. PubMed ID: 30888519 [TBL] [Abstract][Full Text] [Related]
8. Representation learning for clinical time series prediction tasks in electronic health records. Ruan T; Lei L; Zhou Y; Zhai J; Zhang L; He P; Gao J BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 8):259. PubMed ID: 31842854 [TBL] [Abstract][Full Text] [Related]
9. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques. Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792 [TBL] [Abstract][Full Text] [Related]
10. Predicting Gastrointestinal Bleeding Events from Multimodal In-Hospital Electronic Health Records Using Deep Fusion Networks. Hung CY; Lin CH; Chang CS; Li JL; Lee CC Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2447-2450. PubMed ID: 31946393 [TBL] [Abstract][Full Text] [Related]
11. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
12. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
13. Identifying and Predicting Intentional Self-Harm in Electronic Health Record Clinical Notes: Deep Learning Approach. Obeid JS; Dahne J; Christensen S; Howard S; Crawford T; Frey LJ; Stecker T; Bunnell BE JMIR Med Inform; 2020 Jul; 8(7):e17784. PubMed ID: 32729840 [TBL] [Abstract][Full Text] [Related]
14. A machine learning-based framework to identify type 2 diabetes through electronic health records. Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371 [TBL] [Abstract][Full Text] [Related]
15. A hybrid Neural Network Model for Joint Prediction of Presence and Period Assertions of Medical Events in Clinical Notes. Rumeng L; Abhyuday N J; Hong Y AMIA Annu Symp Proc; 2017; 2017():1149-1158. PubMed ID: 29854183 [TBL] [Abstract][Full Text] [Related]
16. De-Identifying Swedish EHR Text Using Public Resources in the General Domain. Chomutare T; Yigzaw KY; Budrionis A; Makhlysheva A; Godtliebsen F; Dalianis H Stud Health Technol Inform; 2020 Jun; 270():148-152. PubMed ID: 32570364 [TBL] [Abstract][Full Text] [Related]
17. Early Prediction of Neoplasms Using Machine Learning: A Study of Electronic Health Records from the Ministry of National Guard Health Affairs in Saudi Arabia. Abdullah Alfayez A; Grace Lai A; Kunz H Stud Health Technol Inform; 2022 Jan; 289():37-40. PubMed ID: 35062086 [TBL] [Abstract][Full Text] [Related]
18. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing. Garg R; Oh E; Naidech A; Kording K; Prabhakaran S J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549 [TBL] [Abstract][Full Text] [Related]
19. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods. Zhang Y; Wang X; Hou Z; Li J JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093 [TBL] [Abstract][Full Text] [Related]
20. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]