These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32822446)

  • 1. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds.
    Hayashi K; Ishikawa K
    J Mater Chem B; 2020 Sep; 8(37):8536-8545. PubMed ID: 32822446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration.
    Hayashi K; Munar ML; Ishikawa K
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110848. PubMed ID: 32279778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of critical-size segmental defects in rat femurs using carbonate apatite honeycomb scaffolds.
    Sakemi Y; Hayashi K; Tsuchiya A; Nakashima Y; Ishikawa K
    J Biomed Mater Res A; 2021 Sep; 109(9):1613-1622. PubMed ID: 33644971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering.
    Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L
    Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration.
    Hayashi K; Kishida R; Tsuchiya A; Ishikawa K
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34570-34577. PubMed ID: 37433180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model for bone tissue regeneration inside a specific type of scaffold.
    Sanz-Herrera JA; Garcia-Aznar JM; Doblare M
    Biomech Model Mechanobiol; 2008 Oct; 7(5):355-66. PubMed ID: 17530310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents.
    Matsuura A; Kubo T; Doi K; Hayashi K; Morita K; Yokota R; Hayashi H; Hirata I; Okazaki M; Akagawa Y
    Dent Mater J; 2009 Mar; 28(2):234-42. PubMed ID: 19496405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmental composite porous scaffolds with either osteogenesis or anti-bone resorption properties tested in a rabbit ulna defect model.
    Chen S; Lau P; Lei M; Peng J; Tang T; Wang X; Qin L; Kumta SM
    J Tissue Eng Regen Med; 2017 Jan; 11(1):34-43. PubMed ID: 24668843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porosity of 3D biomaterial scaffolds and osteogenesis.
    Karageorgiou V; Kaplan D
    Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.
    Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C
    Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffold.
    Roshan-Ghias A; Terrier A; Bourban PE; Pioletti DP
    Eur Cell Mater; 2010 Feb; 19():41-9. PubMed ID: 20178097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.