BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 32822587)

  • 1. Functional Interplay between Histone H2B ADP-Ribosylation and Phosphorylation Controls Adipogenesis.
    Huang D; Camacho CV; Setlem R; Ryu KW; Parameswaran B; Gupta RK; Kraus WL
    Mol Cell; 2020 Sep; 79(6):934-949.e14. PubMed ID: 32822587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PARP-1 Flips the Epigenetic Switch on Obesity.
    Margulies CE; Ladurner AG
    Mol Cell; 2020 Sep; 79(6):874-875. PubMed ID: 32946760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and adipocyte function.
    Erener S; Hesse M; Kostadinova R; Hottiger MO
    Mol Endocrinol; 2012 Jan; 26(1):79-86. PubMed ID: 22053002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ADP-ribosylation of histone variant H2AX promotes base excision repair.
    Chen Q; Bian C; Wang X; Liu X; Ahmad Kassab M; Yu Y; Yu X
    EMBO J; 2021 Jan; 40(2):e104542. PubMed ID: 33264433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPF1/C4orf27 Is a PARP-1-Interacting Protein that Regulates PARP-1 ADP-Ribosylation Activity.
    Gibbs-Seymour I; Fontana P; Rack JGM; Ahel I
    Mol Cell; 2016 May; 62(3):432-442. PubMed ID: 27067600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncohistone Mutations Occur at Functional Sites of Regulatory ADP-Ribosylation.
    Huang D; Camacho CV; Martire S; Nagari A; Setlem R; Gong X; Edwards AD; Chiu SP; Banaszynski LA; Kraus WL
    Cancer Res; 2022 Jul; 82(13):2361-2377. PubMed ID: 35472077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription.
    Bütepage M; Preisinger C; von Kriegsheim A; Scheufen A; Lausberg E; Li J; Kappes F; Feederle R; Ernst S; Eckei L; Krieg S; Müller-Newen G; Rossetti G; Feijs KLH; Verheugd P; Lüscher B
    Sci Rep; 2018 Apr; 8(1):6748. PubMed ID: 29712969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific ADP-ribosylation of histone H2B in response to DNA double strand breaks.
    Rakhimova A; Ura S; Hsu DW; Wang HY; Pears CJ; Lakin ND
    Sci Rep; 2017 Mar; 7():43750. PubMed ID: 28252050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage.
    Smith R; Zentout S; Rother M; Bigot N; Chapuis C; Mihuț A; Zobel FF; Ahel I; van Attikum H; Timinszky G; Huet S
    Nat Struct Mol Biol; 2023 May; 30(5):678-691. PubMed ID: 37106138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage.
    Gu Z; Pan W; Chen W; Lian Q; Wu Q; Lv Z; Cheng X; Ge X
    BMC Plant Biol; 2019 Aug; 19(1):364. PubMed ID: 31426748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine ADP-Ribosylation Depends on HPF1.
    Bonfiglio JJ; Fontana P; Zhang Q; Colby T; Gibbs-Seymour I; Atanassov I; Bartlett E; Zaja R; Ahel I; Matic I
    Mol Cell; 2017 Mar; 65(5):932-940.e6. PubMed ID: 28190768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage.
    Karch KR; Langelier MF; Pascal JM; Garcia BA
    Mol Biosyst; 2017 Nov; 13(12):2660-2671. PubMed ID: 29058739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cell-Line-Specific Atlas of PARP-Mediated Protein Asp/Glu-ADP-Ribosylation in Breast Cancer.
    Zhen Y; Zhang Y; Yu Y
    Cell Rep; 2017 Nov; 21(8):2326-2337. PubMed ID: 29166620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiomics analysis of the NAD
    Jones A; Kraus WL
    Genes Dev; 2022 May; 36(9-10):601-617. PubMed ID: 35654456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial NAD
    Hopp AK; Teloni F; Bisceglie L; Gondrand C; Raith F; Nowak K; Muskalla L; Howald A; Pedrioli PGA; Johnsson K; Altmeyer M; Pedrioli DML; Hottiger MO
    Mol Cell; 2021 Jan; 81(2):340-354.e5. PubMed ID: 33450210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of ADP-Ribosylated Histones Reveals Site-Specific Impacts on Chromatin Structure and Function.
    Hananya N; Daley SK; Bagert JD; Muir TW
    J Am Chem Soc; 2021 Jul; 143(29):10847-10852. PubMed ID: 34264659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling.
    Longarini EJ; Dauben H; Locatelli C; Wondisford AR; Smith R; Muench C; Kolvenbach A; Lynskey ML; Pope A; Bonfiglio JJ; Jurado EP; Fajka-Boja R; Colby T; Schuller M; Ahel I; Timinszky G; O'Sullivan RJ; Huet S; Matic I
    Mol Cell; 2023 May; 83(10):1743-1760.e11. PubMed ID: 37116497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP.
    Rogge RA; Gibson BA; Kraus WL
    Methods Mol Biol; 2018; 1813():371-387. PubMed ID: 30097881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic regulation of transcription through compartmentalized NAD
    Ryu KW; Nandu T; Kim J; Challa S; DeBerardinis RJ; Kraus WL
    Science; 2018 May; 360(6389):. PubMed ID: 29748257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.