These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 32822745)
1. Accumulation of polyubiquitinated proteins: A consequence of early inactivation of the 26S proteasome. Reeg S; Castro JP; Hugo M; Grune T Free Radic Biol Med; 2020 Nov; 160():293-302. PubMed ID: 32822745 [TBL] [Abstract][Full Text] [Related]
2. Degradation of oxidized proteins by the 20S proteasome. Davies KJ Biochimie; 2001; 83(3-4):301-10. PubMed ID: 11295490 [TBL] [Abstract][Full Text] [Related]
3. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Shang F; Taylor A Free Radic Biol Med; 2011 Jul; 51(1):5-16. PubMed ID: 21530648 [TBL] [Abstract][Full Text] [Related]
4. Efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins. Abi Habib J; De Plaen E; Stroobant V; Zivkovic D; Bousquet MP; Guillaume B; Wahni K; Messens J; Busse A; Vigneron N; Van den Eynde BJ Sci Rep; 2020 Sep; 10(1):15765. PubMed ID: 32978409 [TBL] [Abstract][Full Text] [Related]
5. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Raynes R; Pomatto LC; Davies KJ Mol Aspects Med; 2016 Aug; 50():41-55. PubMed ID: 27155164 [TBL] [Abstract][Full Text] [Related]
6. Early cysteine-dependent inactivation of 26S proteasomes does not involve particle disassembly. Hugo M; Korovila I; Köhler M; García-García C; Cabrera-García JD; Marina A; Martínez-Ruiz A; Grune T Redox Biol; 2018 Jun; 16():123-128. PubMed ID: 29499565 [TBL] [Abstract][Full Text] [Related]
7. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress. Kästle M; Reeg S; Rogowska-Wrzesinska A; Grune T Free Radic Biol Med; 2012 Oct; 53(7):1468-77. PubMed ID: 22683819 [TBL] [Abstract][Full Text] [Related]
8. Autoregulation of the 26S proteasome by in situ ubiquitination. Jacobson AD; MacFadden A; Wu Z; Peng J; Liu CW Mol Biol Cell; 2014 Jun; 25(12):1824-35. PubMed ID: 24743594 [TBL] [Abstract][Full Text] [Related]
9. The 26S Proteasome Switches between ATP-Dependent and -Independent Mechanisms in Response to Substrate Ubiquitination. Manfredonia AJ; Kraut DA Biomolecules; 2022 May; 12(6):. PubMed ID: 35740875 [TBL] [Abstract][Full Text] [Related]
10. Protein oxidation and proteolysis. Bader N; Grune T Biol Chem; 2006; 387(10-11):1351-5. PubMed ID: 17081106 [TBL] [Abstract][Full Text] [Related]
11. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Ciechanover A; Stanhill A Biochim Biophys Acta; 2014 Jan; 1843(1):86-96. PubMed ID: 23872423 [TBL] [Abstract][Full Text] [Related]
12. Selective degradation of oxidatively modified protein substrates by the proteasome. Grune T; Merker K; Sandig G; Davies KJ Biochem Biophys Res Commun; 2003 Jun; 305(3):709-18. PubMed ID: 12763051 [TBL] [Abstract][Full Text] [Related]
13. 26S proteasomes become stably activated upon heat shock when ubiquitination and protein degradation increase. Lee D; Goldberg AL Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2122482119. PubMed ID: 35704754 [TBL] [Abstract][Full Text] [Related]
14. Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Cohen-Kaplan V; Ciechanover A; Livneh I Autophagy; 2017 Apr; 13(4):759-760. PubMed ID: 28121483 [TBL] [Abstract][Full Text] [Related]
15. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Reeg S; Jung T; Castro JP; Davies KJA; Henze A; Grune T Free Radic Biol Med; 2016 Oct; 99():153-166. PubMed ID: 27498116 [TBL] [Abstract][Full Text] [Related]
16. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Reinheckel T; Sitte N; Ullrich O; Kuckelkorn U; Davies KJ; Grune T Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):637-42. PubMed ID: 9794805 [TBL] [Abstract][Full Text] [Related]
17. Redox regulation of the proteasome via S-glutathionylation. Demasi M; Netto LE; Silva GM; Hand A; de Oliveira CL; Bicev RN; Gozzo F; Barros MH; Leme JM; Ohara E Redox Biol; 2013 Dec; 2():44-51. PubMed ID: 24396728 [TBL] [Abstract][Full Text] [Related]
18. The proteasome and the degradation of oxidized proteins: Part II - protein oxidation and proteasomal degradation. Jung T; Höhn A; Grune T Redox Biol; 2014; 2():99-104. PubMed ID: 25460724 [TBL] [Abstract][Full Text] [Related]