These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32822770)

  • 1. Simultaneous screening of the stability and dosimetry of nanoparticles dispersions for in vitro toxicological studies with static multiple light scattering technique.
    Sentis MPL; Brambilla G; Fessard V; Meunier G
    Toxicol In Vitro; 2020 Dec; 69():104972. PubMed ID: 32822770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-chemical characterization in the light of toxicological effects.
    Meissner T; Potthoff A; Richter V
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():35-9. PubMed ID: 19558232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo.
    Murugadoss S; Brassinne F; Sebaihi N; Petry J; Cokic SM; Van Landuyt KL; Godderis L; Mast J; Lison D; Hoet PH; van den Brule S
    Part Fibre Toxicol; 2020 Feb; 17(1):10. PubMed ID: 32101144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol.
    Guiot C; Spalla O
    Environ Sci Technol; 2013 Jan; 47(2):1057-64. PubMed ID: 23240597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations.
    Meissner T; Kühnel D; Busch W; Oswald S; Richter V; Michaelis A; Schirmer K; Potthoff A
    Nanotoxicology; 2010 Jun; 4(2):196-206. PubMed ID: 20795896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive.
    Katsumiti A; Berhanu D; Howard KT; Arostegui I; Oron M; Reip P; Valsami-Jones E; Cajaraville MP
    Nanotoxicology; 2015; 9(5):543-53. PubMed ID: 25188678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of three dispersion media on the physicochemical and toxicological behavior of TiO2 and NiO nanoparticles.
    Gutierrez ER; Kamens RM; Tolocka M; Sexton K; Jaspers I
    Chem Biol Interact; 2015 Jul; 236():74-81. PubMed ID: 25964212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycarboxylate ethers: The key towards non-toxic TiO2 nanoparticle stabilisation in physiological solutions.
    Koch S; Kessler M; Mandel K; Dembski S; Heuzé K; Hackenberg S
    Colloids Surf B Biointerfaces; 2016 Jul; 143():7-14. PubMed ID: 26998862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.
    Tantra R; Tompkins J; Quincey P
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):275-81. PubMed ID: 19775871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unaffected features of BSA stabilized Ag nanoparticles after storage and reconstitution in biological relevant media.
    Valenti LE; Giacomelli CE
    Colloids Surf B Biointerfaces; 2015 Aug; 132():71-7. PubMed ID: 26119107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable metal oxide nanoparticle formulation for toxicity studies.
    Gurbani D; Shukla RK; Pandey AK; Dhawan A
    J Biomed Nanotechnol; 2011 Feb; 7(1):104-5. PubMed ID: 21485825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO
    Vranic S; Gosens I; Jacobsen NR; Jensen KA; Bokkers B; Kermanizadeh A; Stone V; Baeza-Squiban A; Cassee FR; Tran L; Boland S
    Arch Toxicol; 2017 Jan; 91(1):353-363. PubMed ID: 26872950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for metal contamination by direct sonication of nanoparticle suspensions.
    Betts JN; Johnson MG; Rygiewicz PT; King GA; Andersen CP
    Environ Toxicol Chem; 2013 Apr; 32(4):889-93. PubMed ID: 23322586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment.
    Kato H; Suzuki M; Fujita K; Horie M; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Nakamura A; Kinugasa S
    Toxicol In Vitro; 2009 Aug; 23(5):927-34. PubMed ID: 19397995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BSA Adsorption on Titanium Dioxide Nanoparticle Surfaces for Controlling Their Cellular Uptake in Skin Cells.
    Thiramanas R; Wongngam Y; Supanakorn G; Polpanich D
    ACS Appl Bio Mater; 2024 Mar; 7(3):1713-1722. PubMed ID: 38494987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the Physicochemical Features of TiO
    Kose O; Tomatis M; Leclerc L; Belblidia NB; Hochepied JF; Turci F; Pourchez J; Forest V
    Chem Res Toxicol; 2020 Sep; 33(9):2324-2337. PubMed ID: 32786542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized method for preparation of TiO2 nanoparticles dispersion for biological study.
    Zhang X; Yin L; Tang M; Pu Y
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5213-9. PubMed ID: 21125873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of agglomeration on the bioaccumulation of sub-100 nm sized TiO₂.
    Kwon D; Jeon SK; Yoon TH
    Colloids Surf B Biointerfaces; 2014 Apr; 116():277-83. PubMed ID: 24495458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.