These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32822820)

  • 1. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model.
    Matsuzaki Y; Iwaki R; Reinhardt JW; Chang YC; Miyamoto S; Kelly J; Zbinden J; Blum K; Mirhaidari G; Ulziibayar A; Shoji T; Breuer CK; Shinoka T
    Acta Biomater; 2020 Oct; 115():176-184. PubMed ID: 32822820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation.
    Matsuzaki Y; Miyamoto S; Miyachi H; Iwaki R; Shoji T; Blum K; Chang YC; Kelly J; Reinhardt JW; Nakayama H; Breuer CK; Shinoka T
    Ann Thorac Surg; 2021 Apr; 111(4):1234-1241. PubMed ID: 32946845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porcine carotid artery replacement with biodegradable electrospun poly-e-caprolactone vascular prosthesis.
    Mrówczyński W; Mugnai D; de Valence S; Tille JC; Khabiri E; Cikirikcioglu M; Möller M; Walpoth BH
    J Vasc Surg; 2014 Jan; 59(1):210-9. PubMed ID: 23707057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.
    Fukunishi T; Best CA; Sugiura T; Shoji T; Yi T; Udelsman B; Ohst D; Ong CS; Zhang H; Shinoka T; Breuer CK; Johnson J; Hibino N
    PLoS One; 2016; 11(7):e0158555. PubMed ID: 27467821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model.
    Matsushita H; Hayashi H; Nurminsky K; Dunn T; He Y; Pitaktong I; Koda Y; Xu S; Nguyen V; Inoue T; Rodgers D; Nelson K; Johnson J; Hibino N
    JVS Vasc Sci; 2022; 3():182-191. PubMed ID: 35495567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model.
    Jin X; Geng X; Jia L; Xu Z; Ye L; Gu Y; Zhang AY; Feng ZG
    Macromol Biosci; 2019 Aug; 19(8):e1900114. PubMed ID: 31222914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling.
    Best CA; Szafron JM; Rocco KA; Zbinden J; Dean EW; Maxfield MW; Kurobe H; Tara S; Bagi PS; Udelsman BV; Khosravi R; Yi T; Shinoka T; Humphrey JD; Breuer CK
    Acta Biomater; 2019 Aug; 94():183-194. PubMed ID: 31200116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of heparinized small diameter TPU/PCL bi-layered artificial blood vessels and in vivo assessment in a rabbit carotid artery replacement model.
    Fang Z; Xiao Y; Geng X; Jia L; Xing Y; Ye L; Gu Y; Zhang AY; Feng ZG
    Biomater Adv; 2022 Feb; 133():112628. PubMed ID: 35527159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inconsistency in Graft Outcome of Bilayered Bioresorbable Supramolecular Arterial Scaffolds in Rats.
    Duijvelshoff R; di Luca A; van Haaften EE; Dekker S; Söntjens SHM; Janssen HM; Smits AIPM; Dankers PYW; Bouten CVC
    Tissue Eng Part A; 2021 Jul; 27(13-14):894-904. PubMed ID: 32873211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Bioresorbable Vascular Graft With Sponge-Type Scaffold as a Small-Diameter Arterial Graft.
    Sugiura T; Tara S; Nakayama H; Kurobe H; Yi T; Lee YU; Lee AY; Breuer CK; Shinoka T
    Ann Thorac Surg; 2016 Sep; 102(3):720-727. PubMed ID: 27154152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration.
    Shafiq M; Jung Y; Kim SH
    J Biomed Mater Res A; 2016 Jun; 104(6):1352-71. PubMed ID: 26822178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Off-the-shelf, heparinized small diameter vascular graft limits acute thrombogenicity in a porcine model.
    Elliott MB; Matsushita H; Shen J; Yi J; Inoue T; Brady T; Santhanam L; Mao HQ; Hibino N; Gerecht S
    Acta Biomater; 2022 Oct; 151():134-147. PubMed ID: 35933100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts.
    Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration.
    Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q
    Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resorbable vascular grafts show rapid cellularization and degradation in the ovine carotid.
    Stowell CET; Li X; Matsunaga MH; Cockreham CB; Kelly KM; Cheetham J; Tzeng E; Wang Y
    J Tissue Eng Regen Med; 2020 Nov; 14(11):1673-1684. PubMed ID: 32893492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft.
    Tara S; Kurobe H; Maxfield MW; Rocco KA; Yi T; Naito Y; Breuer CK; Shinoka T
    J Vasc Surg; 2015 Sep; 62(3):734-43. PubMed ID: 24745941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of plasma and chemical modifications of poly-L-lactide-co-caprolactone scaffolds for heparin conjugation.
    Hsieh YF; Sahagian K; Huang F; Xu K; Patel S; Li S
    Biomed Mater; 2017 Oct; 12(6):065004. PubMed ID: 28980527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model.
    Xu Z; Gu Y; Li J; Feng Z; Guo L; Tong Z; Ye L; Wang C; Wang R; Geng X; Wang C; Zhang J
    J Vasc Res; 2018; 55(6):338-349. PubMed ID: 30485863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oversized Biodegradable Arterial Grafts Promote Enhanced Neointimal Tissue Formation.
    Best C; Fukunishi T; Drews J; Khosravi R; Hor K; Mahler N; Yi T; Humphrey JD; Johnson J; Breuer CK; Hibino N
    Tissue Eng Part A; 2018 Aug; 24(15-16):1251-1261. PubMed ID: 29431029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.