These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32822820)

  • 21. Small diameter vascular graft with fibroblast cells and electrospun poly (L-lactide-co-ε-caprolactone) scaffolds: Cell Matrix Engineering.
    Jang BS; Cheon JY; Kim SH; Park WH
    J Biomater Sci Polym Ed; 2018; 29(7-9):942-959. PubMed ID: 28816087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thick PCL Fibers Improving Host Remodeling of PGS-PCL Composite Grafts Implanted in Rat Common Carotid Arteries.
    Fu J; Wang M; De Vlaminck I; Wang Y
    Small; 2020 Dec; 16(52):e2004133. PubMed ID: 33251720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo.
    Zhao L; Li X; Yang L; Sun L; Mu S; Zong H; Li Q; Wang F; Song S; Yang C; Zhao C; Chen H; Zhang R; Wang S; Dong Y; Zhang Q
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111441. PubMed ID: 33255034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(ε-caprolactone) nanofibrous scaffolds.
    Zhou M; Qiao W; Liu Z; Shang T; Qiao T; Mao C; Liu C
    Tissue Eng Part A; 2014 Jan; 20(1-2):79-91. PubMed ID: 23902162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term results of tissue-engineered small-caliber vascular grafts in a rat carotid arterial replacement model.
    Kuwabara F; Narita Y; Yamawaki-Ogata A; Satake M; Kaneko H; Oshima H; Usui A; Ueda Y
    J Artif Organs; 2012 Dec; 15(4):399-405. PubMed ID: 22806242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun vascular grafts fabricated from poly(L-lactide-co-ε-caprolactone) used as a bypass for the rabbit carotid artery.
    Horakova J; Mikes P; Lukas D; Saman A; Jencova V; Klapstova A; Svarcova T; Ackermann M; Novotny V; Kalab M; Lonsky V; Bartos M; Rampichova M; Litvinec A; Kubikova T; Tomasek P; Tonar Z
    Biomed Mater; 2018 Sep; 13(6):065009. PubMed ID: 30177582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regenerative and durable small-diameter graft as an arterial conduit.
    Elliott MB; Ginn B; Fukunishi T; Bedja D; Suresh A; Chen T; Inoue T; Dietz HC; Santhanam L; Mao HQ; Hibino N; Gerecht S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12710-12719. PubMed ID: 31182572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft.
    Miyachi H; Tara S; Otsuru S; Yi T; Lee YU; Drews JD; Nakayama H; Miyamoto S; Sugiura T; Shoji T; Breuer CK; Shinoka T
    JVS Vasc Sci; 2020; 1():57-67. PubMed ID: 34223286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering.
    Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The surrounding tissue contributes to smooth muscle cells' regeneration and vascularization of small diameter vascular grafts.
    Liu J; Qin Y; Wu Y; Sun Z; Li B; Jing H; Zhang C; Li C; Leng X; Wang Z; Kong D
    Biomater Sci; 2019 Feb; 7(3):914-925. PubMed ID: 30511718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term observation of polycaprolactone small-diameter vascular grafts with thickened outer layer and heparinized inner layer in rabbit carotid arteries.
    Xiao Y; Jin X; Jia L; Li J; Zhang B; Geng X; Ye L; Zhang AY; Gu Y; Feng ZG
    Biomed Mater; 2024 Mar; 19(3):. PubMed ID: 38430567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the Patency and Regenerative Potential of Biodegradable Vascular Prostheses of Different Polymer Compositions in an Ovine Model.
    Antonova LV; Sevostianova VV; Silnikov VN; Krivkina EO; Velikanova EA; Mironov AV; Shabaev AR; Senokosova EA; Khanova MY; Glushkova TV; Akentieva TN; Sinitskaya AV; Markova VE; Shishkova DK; Lobov AA; Repkin EA; Stepanov AD; Kutikhin AG; Barbarash LS
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis.
    Gupta P; Lorentz KL; Haskett DG; Cunnane EM; Ramaswamy AK; Weinbaum JS; Vorp DA; Mandal BB
    Acta Biomater; 2020 Mar; 105():146-158. PubMed ID: 31958596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF.
    Hu YT; Pan XD; Zheng J; Ma WG; Sun LZ
    Int J Surg; 2017 Aug; 44():244-249. PubMed ID: 28648794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding.
    Yokota T; Ichikawa H; Matsumiya G; Kuratani T; Sakaguchi T; Iwai S; Shirakawa Y; Torikai K; Saito A; Uchimura E; Kawaguchi N; Matsuura N; Sawa Y
    J Thorac Cardiovasc Surg; 2008 Oct; 136(4):900-7. PubMed ID: 18954628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques.
    Roh JD; Brennan MP; Lopez-Soler RI; Fong PM; Goyal A; Dardik A; Breuer CK
    J Pediatr Surg; 2007 Jan; 42(1):198-202. PubMed ID: 17208565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast-Degrading Tissue-Engineered Vascular Grafts Lead to Increased Extracellular Matrix Cross-Linking Enzyme Expression.
    Fukunishi T; Ong CS; He YJ; Inoue T; Zhang H; Steppan J; Matsushita H; Johnson J; Santhanam L; Hibino N
    Tissue Eng Part A; 2021 Nov; 27(21-22):1368-1375. PubMed ID: 33599167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model.
    Nieponice A; Soletti L; Guan J; Hong Y; Gharaibeh B; Maul TM; Huard J; Wagner WR; Vorp DA
    Tissue Eng Part A; 2010 Apr; 16(4):1215-23. PubMed ID: 19895206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation.
    Pektok E; Nottelet B; Tille JC; Gurny R; Kalangos A; Moeller M; Walpoth BH
    Circulation; 2008 Dec; 118(24):2563-70. PubMed ID: 19029464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.