These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 32823002)
1. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading. Lin X; Zhao J; Gao L; Zhang C; Gao H J Mech Behav Biomed Mater; 2020 Dec; 112():104003. PubMed ID: 32823002 [TBL] [Abstract][Full Text] [Related]
2. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression. Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978 [TBL] [Abstract][Full Text] [Related]
3. Effects of creep and creep-recovery on ratcheting strain of articular cartilage under cyclic compression. Gao L; Liu D; Gao H; Lv L; Zhang C Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():988-997. PubMed ID: 30423787 [TBL] [Abstract][Full Text] [Related]
4. Ratcheting behavior of articular cartilage under cyclic unconfined compression. Gao LL; Qin XY; Zhang CQ; Gao H; Ge HY; Zhang XZ Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():371-7. PubMed ID: 26354278 [TBL] [Abstract][Full Text] [Related]
5. Effect of torsional loading on compressive fatigue behaviour of trabecular bone. Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762 [TBL] [Abstract][Full Text] [Related]
6. Depth-dependent ratcheting strains of young and adult articular cartilages by experiments and predictions. Gao LL; Lin XL; Liu DD; Chen L; Zhang CQ; Gao H Biomed Eng Online; 2019 Jul; 18(1):85. PubMed ID: 31362738 [TBL] [Abstract][Full Text] [Related]
7. Ratcheting Behavior of Intervertebral Discs Under Cyclic Compression: Experiment and Prediction. Zhang CQ; Zhang T; Gao L; Du CF; Liu Q; Liu HY; Wang X Orthop Surg; 2019 Oct; 11(5):895-902. PubMed ID: 31663289 [TBL] [Abstract][Full Text] [Related]
8. Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution. Miller AT; Safranski DL; Smith KE; Guldberg RE; Gall K J Mech Behav Biomed Mater; 2016 Feb; 54():268-82. PubMed ID: 26479427 [TBL] [Abstract][Full Text] [Related]
9. Finite element modeling of damage accumulation in trabecular bone under cyclic loading. Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682 [TBL] [Abstract][Full Text] [Related]
10. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading. Yan Z; Wang D; Wang W; Zhou J; He X; Dong P; Zhang H; Sun L Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29597278 [TBL] [Abstract][Full Text] [Related]
11. Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE). Kanthabhabha Jeya RP; Bouzid AH Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966192 [TBL] [Abstract][Full Text] [Related]
12. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements. Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077 [TBL] [Abstract][Full Text] [Related]
13. Uniaxial and biaxial ratcheting behavior of ultra-high molecular weight polyethylene. Gao H; Wang J; Li F; Gao L; Zhang Z Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():295-306. PubMed ID: 29752101 [TBL] [Abstract][Full Text] [Related]
14. High compressive pre-strains reduce the bending fatigue life of nitinol wire. Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888 [TBL] [Abstract][Full Text] [Related]
15. Creep contributes to the fatigue behavior of bovine trabecular bone. Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444 [TBL] [Abstract][Full Text] [Related]
16. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading. Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575 [TBL] [Abstract][Full Text] [Related]
17. A phenomenological model for predicting fatigue life in bovine trabecular bone. Ganguly P; Moore TL; Gibson LJ J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169 [TBL] [Abstract][Full Text] [Related]
18. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727 [TBL] [Abstract][Full Text] [Related]
19. Measurement of apparent mechanical properties of trabecular bone tissue: Accuracy and limitation of digital image correlation technique. Acciaioli A; Falco L; Baleani M J Mech Behav Biomed Mater; 2020 Mar; 103():103542. PubMed ID: 32090943 [TBL] [Abstract][Full Text] [Related]
20. Compressive fatigue behavior of human vertebral trabecular bone. Rapillard L; Charlebois M; Zysset PK J Biomech; 2006; 39(11):2133-9. PubMed ID: 16051256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]