These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 32823071)
1. Combined effects of exposure to engineered silver nanoparticles and the water-soluble fraction of crude oil in the marine copepod Calanus finmarchicus. Farkas J; Cappadona V; Olsen AJ; Hansen BH; Posch W; Ciesielski TM; Goodhead R; Wilflingseder D; Blatzer M; Altin D; Moger J; Booth AM; Jenssen BM Aquat Toxicol; 2020 Oct; 227():105582. PubMed ID: 32823071 [TBL] [Abstract][Full Text] [Related]
2. Gene expression of GST and CYP330A1 in lipid-rich and lipid-poor female Calanus finmarchicus (Copepoda: Crustacea) exposed to dispersed oil. Hansen BH; Nordtug T; Altin D; Booth A; Hessen KM; Olsen AJ J Toxicol Environ Health A; 2009; 72(3-4):131-9. PubMed ID: 19184728 [TBL] [Abstract][Full Text] [Related]
3. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida. Li L; Wu H; Peijnenburg WJ; van Gestel CA Nanotoxicology; 2015; 9(6):792-801. PubMed ID: 25387252 [TBL] [Abstract][Full Text] [Related]
4. Exposure of juvenile turbot (Scophthalmus maximus) to silver nanoparticles and 17α-ethinylestradiol mixtures: Implications for contaminant uptake and plasma steroid hormone levels. Farkas J; Salaberria I; Styrishave B; Staňková R; Ciesielski TM; Olsen AJ; Posch W; Flaten TP; Krøkje Å; Salvenmoser W; Jenssen BM Environ Pollut; 2017 Jan; 220(Pt A):328-336. PubMed ID: 27692975 [TBL] [Abstract][Full Text] [Related]
5. Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms. Fang W; Chi Z; Li W; Zhang X; Zhang Q J Nanobiotechnology; 2019 May; 17(1):66. PubMed ID: 31101056 [TBL] [Abstract][Full Text] [Related]
6. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Ulm L; Krivohlavek A; Jurašin D; Ljubojević M; Šinko G; Crnković T; Žuntar I; Šikić S; Vinković Vrček I Environ Sci Pollut Res Int; 2015 Dec; 22(24):19990-9. PubMed ID: 26296504 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of dissolved and nanoparticulate Ag effects on the life cycle of an estuarine meiobenthic copepod, Amphiascus tenuiremis. Sikder M; Eudy E; Chandler GT; Baalousha M Nanotoxicology; 2018 Jun; 12(5):375-389. PubMed ID: 29553855 [TBL] [Abstract][Full Text] [Related]
8. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Ale A; Liberatori G; Vannuccini ML; Bergami E; Ancora S; Mariotti G; Bianchi N; Galdopórpora JM; Desimone MF; Cazenave J; Corsi I Aquat Toxicol; 2019 Jun; 211():46-56. PubMed ID: 30946994 [TBL] [Abstract][Full Text] [Related]
9. Ion-release kinetics and ecotoxicity effects of silver nanoparticles. Lee YJ; Kim J; Oh J; Bae S; Lee S; Hong IS; Kim SH Environ Toxicol Chem; 2012 Jan; 31(1):155-9. PubMed ID: 22012883 [TBL] [Abstract][Full Text] [Related]
10. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
11. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna. Zhang Z; Yang X; Shen M; Yin Y; Liu J J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693 [TBL] [Abstract][Full Text] [Related]
12. Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco ( Biba R; Cvjetko P; Tkalec M; Košpić K; Štefanić PP; Šikić S; Domijan AM; Balen B Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555562 [TBL] [Abstract][Full Text] [Related]
13. Comparison of acute to chronic ratios between silver and gold nanoparticles, using Ceriodaphnia dubia. Harmon AR; Kennedy AJ; Laird JG; Bednar AJ; Steevens JA Nanotoxicology; 2017; 11(9-10):1127-1139. PubMed ID: 29192531 [TBL] [Abstract][Full Text] [Related]
14. Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Vincent JL; Paterson MJ; Norman BC; Gray EP; Ranville JF; Scott AB; Frost PC; Xenopoulos MA Ecotoxicology; 2017 May; 26(4):502-515. PubMed ID: 28233158 [TBL] [Abstract][Full Text] [Related]
17. The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata. Lekamge S; Miranda AF; Ball AS; Shukla R; Nugegoda D PLoS One; 2019; 14(4):e0214398. PubMed ID: 30943225 [TBL] [Abstract][Full Text] [Related]
18. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil. Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Hansen BH; Altin D; Rørvik SF; Øverjordet IB; Olsen AJ; Nordtug T Sci Total Environ; 2011 Jan; 409(4):704-9. PubMed ID: 21130489 [TBL] [Abstract][Full Text] [Related]
20. Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation. Kwok KW; Dong W; Marinakos SM; Liu J; Chilkoti A; Wiesner MR; Chernick M; Hinton DE Nanotoxicology; 2016 Nov; 10(9):1306-17. PubMed ID: 27345576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]