BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32823076)

  • 1. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar.
    Malhotra M; Garg A
    Waste Manag; 2020 Nov; 117():114-123. PubMed ID: 32823076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization.
    Becker GC; Wüst D; Köhler H; Lautenbach A; Kruse A
    J Environ Manage; 2019 May; 238():119-125. PubMed ID: 30849596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy conversion performance in co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupling with anaerobic digestion of the produced wastewater.
    Wang R; Lin K; Ren D; Peng P; Zhao Z; Yin Q; Gao P
    Sci Total Environ; 2022 Jan; 803():149964. PubMed ID: 34481162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye.
    Khoshbouy R; Takahashi F; Yoshikawa K
    Environ Res; 2019 Aug; 175():457-467. PubMed ID: 31158564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge.
    Wang H; Yang Z; Li X; Liu Y
    Environ Sci Pollut Res Int; 2020 May; 27(14):17109-17122. PubMed ID: 32146677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical, structural analysis of coal discards (and sewage sludge) (co)-HTC derived biochar for a sustainable carbon economy and evaluation of the liquid by-product.
    Kahilu GM; Bada S; Mulopo J
    Sci Rep; 2022 Oct; 12(1):17532. PubMed ID: 36266312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the implementation of hydrothermal carbonization for nutrients, carbon, and energy recovery in centralized biogas plant treating sewage sludge.
    Hämäläinen A; Kokko M; Tolvanen H; Kinnunen V; Rintala J
    Waste Manag; 2024 Jan; 173():99-108. PubMed ID: 37984264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus.
    Shi Y; Luo G; Rao Y; Chen H; Zhang S
    Chemosphere; 2019 Aug; 228():619-628. PubMed ID: 31059960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and thermodynamic studies of phosphate behavior during the hydrothermal carbonization of sewage sludge.
    Ovsyannikova E; Arauzo PJ; Becker GС; Kruse A
    Sci Total Environ; 2019 Nov; 692():147-156. PubMed ID: 31344568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal carbonization coupling with liquid dimethyl ether extraction pretreatment of sewage sludge: Hydrochar performance improvement and low-nitrogen biocrude production.
    Wang C; Gui B; Wu C; Sun J; Ling X; Zhang H; Zuo X
    Chemosphere; 2023 Feb; 313():137581. PubMed ID: 36549507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faecal sludge treatment and utilization by hydrothermal carbonization.
    Fakkaew K; Koottatep T; Polprasert C
    J Environ Manage; 2018 Jun; 216():421-426. PubMed ID: 28941833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics.
    Cavali M; Benbelkacem H; Kim B; Bayard R; Libardi Junior N; Gonzaga Domingos D; Woiciechowski AL; Castilhos Junior AB
    J Environ Manage; 2023 Aug; 340():117994. PubMed ID: 37119630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge.
    Marin-Batista JD; Mohedano AF; Rodríguez JJ; de la Rubia MA
    Waste Manag; 2020 Mar; 105():566-574. PubMed ID: 32169812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorus recycling from waste activated sludge using the hydrothermal platform: Recovery, solubility and phytoavailability.
    Khoury O; Gaur R; Zohar M; Erel R; Laor Y; Posmanik R
    Waste Manag; 2023 Sep; 169():23-31. PubMed ID: 37393753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate recovery from hydrothermally treated sewage sludge using struvite precipitation.
    Munir MT; Li B; Boiarkina I; Baroutian S; Yu W; Young BR
    Bioresour Technol; 2017 Sep; 239():171-179. PubMed ID: 28521226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge.
    Shan G; Li W; Bao S; Hu X; Liu J; Zhu L; Tan W
    Waste Manag; 2023 Jan; 155():192-198. PubMed ID: 36379168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron valence state evolution and hydrochar properties under hydrothermal carbonization of dyeing sludge.
    Xiao Y; Ding L; Yang Y; Areeprasert C; Gao Y; Chen X; Wang F
    Waste Manag; 2022 Oct; 152():94-101. PubMed ID: 35998440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant.
    Lee J; Sohn D; Lee K; Park KY
    Chemosphere; 2019 Sep; 230():157-163. PubMed ID: 31103861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-hydrothermal carbonization of microalgae and digested sewage sludge: Assessing the impact of mixing ratios on the composition of primary and secondary char.
    Benavente V; Pérez C; Jansson S
    Waste Manag; 2024 Feb; 174():429-438. PubMed ID: 38104415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal hydrolysis prior to hydrothermal carbonization resulted in high quality sludge hydrochar with low nitrogen and sulfur content.
    Liu X; Yuan S; Dai X
    Waste Manag; 2024 Mar; 176():117-127. PubMed ID: 38277809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.