These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32823127)

  • 1. Ta
    Rasouli H; Hosseini MG; Hosseini MM
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):254-269. PubMed ID: 32823127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green synthesis and characterization of binary, ternary, and quaternary Ti/MMO anodes for chlorine and oxygen evolution reactions.
    Abdel-Aziz AB; Heakal FE; El Nashar RM; Ghayad IM
    Sci Rep; 2024 Apr; 14(1):9821. PubMed ID: 38684728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of reduced graphene oxide in the critical components of a CdS-sensitized TiO2 -based photoelectrochemical cell.
    Selvaraj J; Gupta S; DelaCruz S; Subramanian VR
    Chemphyschem; 2014 Jul; 15(10):2010-8. PubMed ID: 24976600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts.
    Wang Y; Tian W; Cao F; Fang D; Chen S; Li L
    Nanotechnology; 2018 Oct; 29(42):425703. PubMed ID: 30070654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Photocatalytic Hydrogen Evolution from Water Splitting on Ta
    Huerta-Flores AM; Ruiz-Zepeda F; Eyovge C; Winczewski JP; Vandichel M; Gaberšček M; Boscher ND; Gardeniers HJGE; Torres-Martínez LM; Susarrey-Arce A
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31767-31781. PubMed ID: 35786845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Sensitized Graphene/TiO
    Boppella R; Kochuveedu ST; Kim H; Jeong MJ; Marques Mota F; Park JH; Kim DH
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7075-7083. PubMed ID: 28170225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetallic Carbides-Based Nanocomposite as Superior Electrocatalyst for Oxygen Evolution Reaction.
    Tang YJ; Liu CH; Huang W; Wang XL; Dong LZ; Li SL; Lan YQ
    ACS Appl Mater Interfaces; 2017 May; 9(20):16977-16985. PubMed ID: 28475302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting.
    Peng Q; Kalanyan B; Hoertz PG; Miller A; Kim DH; Hanson K; Alibabaei L; Liu J; Meyer TJ; Parsons GN; Glass JT
    Nano Lett; 2013 Apr; 13(4):1481-8. PubMed ID: 23537229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Efficient Charge Transfer at the Interface between Mixed-Phase Copper-Cuprous Oxide and Conducting Polymer Nanostructures for Photocatalytic Water Splitting.
    Ghosh S; Bera S; Sardar S; Pal S; Camargo FVA; D'Andrea C; Cerullo G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18867-18877. PubMed ID: 37023322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed Cu
    Ahn J; Lee S; Kim JH; Wajahat M; Sim HH; Bae J; Pyo J; Jahandar M; Lim DC; Seol SK
    Nanoscale Adv; 2020 Dec; 2(12):5600-5606. PubMed ID: 36133885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrocatalytic degradation of methylene blue using F doped TiO
    Liu D; Tian R; Wang J; Nie E; Piao X; Li X; Sun Z
    Chemosphere; 2017 Oct; 185():574-581. PubMed ID: 28719876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical degradation of dye on TiO
    Gui L; Peng J; Li P; Peng R; Yu P; Luo Y
    Chemosphere; 2019 Nov; 235():1189-1196. PubMed ID: 31561310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polypyrrole Serving as Multifunctional Surface Modifier for Photoanode Enables Efficient Photoelectrochemical Water Oxidation.
    Xu W; Meng L; Tian W; Li S; Cao F; Li L
    Small; 2022 Jan; 18(1):e2105240. PubMed ID: 34741420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives.
    Liu D; Kuang Y
    Adv Mater; 2024 Apr; ():e2311692. PubMed ID: 38619834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.
    Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.