These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 32823372)
1. Sample size requirements for detecting treatment effect heterogeneity in cluster randomized trials. Yang S; Li F; Starks MA; Hernandez AF; Mentz RJ; Choudhury KR Stat Med; 2020 Dec; 39(28):4218-4237. PubMed ID: 32823372 [TBL] [Abstract][Full Text] [Related]
2. Sample size requirements for testing treatment effect heterogeneity in cluster randomized trials with binary outcomes. Maleyeff L; Wang R; Haneuse S; Li F Stat Med; 2023 Nov; 42(27):5054-5083. PubMed ID: 37974475 [TBL] [Abstract][Full Text] [Related]
3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
4. Accounting for unequal cluster sizes in designing cluster randomized trials to detect treatment effect heterogeneity. Tong G; Esserman D; Li F Stat Med; 2022 Apr; 41(8):1376-1396. PubMed ID: 34923655 [TBL] [Abstract][Full Text] [Related]
5. Design and analysis of cluster randomized trials with time-to-event outcomes under the additive hazards mixed model. Blaha O; Esserman D; Li F Stat Med; 2022 Oct; 41(24):4860-4885. PubMed ID: 35908796 [TBL] [Abstract][Full Text] [Related]
6. Maximin optimal cluster randomized designs for assessing treatment effect heterogeneity. Ryan MM; Esserman D; Li F Stat Med; 2023 Sep; 42(21):3764-3785. PubMed ID: 37339777 [TBL] [Abstract][Full Text] [Related]
7. Sample size and power calculation for testing treatment effect heterogeneity in cluster randomized crossover designs. Wang X; Chen X; Goldfeld KS; Taljaard M; Li F Stat Methods Med Res; 2024 Jul; 33(7):1115-1136. PubMed ID: 38689556 [TBL] [Abstract][Full Text] [Related]
8. Power analysis for cluster randomized trials with continuous coprimary endpoints. Yang S; Moerbeek M; Taljaard M; Li F Biometrics; 2023 Jun; 79(2):1293-1305. PubMed ID: 35531926 [TBL] [Abstract][Full Text] [Related]
9. Sample size considerations for assessing treatment effect heterogeneity in randomized trials with heterogeneous intracluster correlations and variances. Tong G; Taljaard M; Li F Stat Med; 2023 Aug; 42(19):3392-3412. PubMed ID: 37316956 [TBL] [Abstract][Full Text] [Related]
10. Evaluating tests for cluster-randomized trials with few clusters under generalized linear mixed models with covariate adjustment: A simulation study. Qiu H; Cook AJ; Bobb JF Stat Med; 2024 Jan; 43(2):201-215. PubMed ID: 37933766 [TBL] [Abstract][Full Text] [Related]
11. Power and sample size calculations for cluster randomized trials with binary outcomes when intracluster correlation coefficients vary by treatment arm. Kennedy-Shaffer L; Hughes MD Clin Trials; 2022 Feb; 19(1):42-51. PubMed ID: 34879711 [TBL] [Abstract][Full Text] [Related]
12. Power calculation for detecting interaction effect in cross-sectional stepped-wedge cluster randomized trials: an important tool for disparity research. Yang C; Berkalieva A; Mazumdar M; Kwon D BMC Med Res Methodol; 2024 Mar; 24(1):57. PubMed ID: 38431550 [TBL] [Abstract][Full Text] [Related]
13. Sample size estimation for stratified individual and cluster randomized trials with binary outcomes. Kennedy-Shaffer L; Hughes MD Stat Med; 2020 May; 39(10):1489-1513. PubMed ID: 32003492 [TBL] [Abstract][Full Text] [Related]
14. Power analyses for stepped wedge designs with multivariate continuous outcomes. Davis-Plourde K; Taljaard M; Li F Stat Med; 2023 Feb; 42(4):559-578. PubMed ID: 36565050 [TBL] [Abstract][Full Text] [Related]
15. Comparing denominator degrees of freedom approximations for the generalized linear mixed model in analyzing binary outcome in small sample cluster-randomized trials. Li P; Redden DT BMC Med Res Methodol; 2015 Apr; 15():38. PubMed ID: 25899170 [TBL] [Abstract][Full Text] [Related]
16. Accounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity. Tong J; Li F; Harhay MO; Tong G BMC Med Res Methodol; 2023 Apr; 23(1):85. PubMed ID: 37024809 [TBL] [Abstract][Full Text] [Related]
17. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level. Moerbeek M; van Schie S BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771 [TBL] [Abstract][Full Text] [Related]
18. Marginal modeling of cluster-period means and intraclass correlations in stepped wedge designs with binary outcomes. Li F; Yu H; Rathouz PJ; Turner EL; Preisser JS Biostatistics; 2022 Jul; 23(3):772-788. PubMed ID: 33527999 [TBL] [Abstract][Full Text] [Related]
19. Sample size calculation in hierarchical Tian Z; Esserman D; Tong G; Blaha O; Dziura J; Peduzzi P; Li F Stat Med; 2022 Feb; 41(4):645-664. PubMed ID: 34978097 [TBL] [Abstract][Full Text] [Related]
20. Covariate-constrained randomization in cluster randomized 2 × 2 factorial trials: application to a diabetes prevention study. Siddique J; Li Z; O'Brien MJ Trials; 2024 Sep; 25(1):593. PubMed ID: 39243103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]