These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32823506)

  • 1. The Physiological and Biochemical Responses of
    Yuan N; Pei Y; Bao A; Wang C
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32823506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequential dewatering and drying treatment enhanced the potential favorable effect of microbial communities in drinking water treatment residue for environmental recycling.
    Wang C; Wei Z; Liu R; Bai L; Jiang H; Yuan N
    Chemosphere; 2021 Jan; 262():127930. PubMed ID: 33182151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and ecotoxicological effects of the use of drinking-water treatment residuals for the remediation of soils degraded by mining activities.
    Alvarenga P; Ferreira C; Mourinha C; Palma P; de Varennes A
    Ecotoxicol Environ Saf; 2018 Oct; 161():281-289. PubMed ID: 29886315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecotoxicological assessment of dewatered drinking water treatment residue for environmental recycling.
    Yuan N; Wang C; Wendling LA; Pei Y
    Environ Technol; 2017 Sep; 38(18):2241-2252. PubMed ID: 27799013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of drinking water treatment residue for lake restoration in relation to metal/metalloid risk assessment.
    Yuan N; Wang C; Pei Y; Jiang H
    Sci Rep; 2016 Dec; 6():38638. PubMed ID: 27929083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.
    Yuan N; Wang C; Pei Y
    J Environ Manage; 2016 Nov; 182():21-28. PubMed ID: 27454093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic matter stabilized Fe in drinking water treatment residue with implications for environmental remediation.
    Wang C; Wang Z; Xu H; Bai L; Liu C; Jiang H; Cui P
    Water Res; 2021 Feb; 189():116688. PubMed ID: 33278722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of the sensitivity of Daphnia galeata and Daphnia magna to heavy metals.
    Cui R; Kwak JI; An YJ
    Ecotoxicol Environ Saf; 2018 Oct; 162():63-70. PubMed ID: 29966939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method to improve the adsorption properties of drinking water treatment residue by lanthanum modification.
    Wang C; Hao Z; Wei Z; Bai L; Yao Z; Xu H; Jiang H; Yan Z; Zhao Y
    Chemosphere; 2019 Apr; 221():750-757. PubMed ID: 30684772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stability of drinking water treatment residue with ozone treatment.
    Liu X; Wu Y; He R; Jiang HL; Wang C
    Environ Technol; 2018 Jul; 39(13):1697-1704. PubMed ID: 28562192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceramsite production using water treatment residue as main ingredient: The key affecting factors identification.
    Wang C; Huang C; Xu H; Yuan N; Liu X; Bai L; He X; Liu R
    J Environ Manage; 2022 Apr; 308():114611. PubMed ID: 35114517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granulation of drinking water treatment residuals as applicable media for phosphorus removal.
    Li X; Cui J; Pei Y
    J Environ Manage; 2018 May; 213():36-46. PubMed ID: 29477849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced removal of heavy metals and phosphate in stormwater filtration systems amended with drinking water treatment residual-based granules.
    Wang M; Bai S; Wang X
    J Environ Manage; 2021 Feb; 280():111645. PubMed ID: 33246755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity Changes of Heavily Polluted River Sediments on Daphnia magna Before and After Dredging.
    Zhang LL; Pei ZT; Zhao YN; Zhang J; Xu RR; Zhang M; Wang WQ; Sun LW; Zhu GC
    Bull Environ Contam Toxicol; 2020 Dec; 105(6):874-881. PubMed ID: 33231746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments.
    Zhang C; Shan B; Zhu Y; Tang W
    Environ Pollut; 2018 Nov; 242(Pt B):1768-1776. PubMed ID: 30072221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of sediment-associated Cu and Zn to Daphnia magna.
    Gillis PL; Wood CM; Ranville JF; Chow-Fraser P
    Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals.
    Ji Z; Pei Y
    Chemosphere; 2019 Jun; 225():579-587. PubMed ID: 30901653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sediment Zn-release during post-drought re-flooding: Assessing environmental risk to Hyalella azteca and Daphnia magna.
    Nedrich SM; Burton GA
    Environ Pollut; 2017 Nov; 230():1116-1124. PubMed ID: 28800684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of lead from sediment bioturbation by Lumbriculus variegatus on Daphnia magna in the water column.
    Blankson ER; Klerks PL
    Ecotoxicology; 2016 Dec; 25(10):1712-1719. PubMed ID: 27660066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining physico-chemical analysis with a Daphnia magna bioassay to evaluate a recycling technology for drinking water treatment plant waste residuals.
    Chen T; Xu Y; Zhu S; Cui F
    Ecotoxicol Environ Saf; 2015 Dec; 122():368-76. PubMed ID: 26318972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.