These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32823582)

  • 1. A Novel Mutual Information Based Feature Set for Drivers' Mental Workload Evaluation Using Machine Learning.
    Islam MR; Barua S; Ahmed MU; Begum S; Aricò P; Borghini G; Di Flumeri G
    Brain Sci; 2020 Aug; 10(8):. PubMed ID: 32823582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature Weight Driven Interactive Mutual Information Modeling for Heterogeneous Bio-Signal Fusion to Estimate Mental Workload.
    Zhang P; Wang X; Chen J; You W
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of Drivers' Workload Using Physiological Signals in Conditional Automation.
    Meteier Q; Capallera M; Ruffieux S; Angelini L; Abou Khaled O; Mugellini E; Widmer M; Sonderegger A
    Front Psychol; 2021; 12():596038. PubMed ID: 33679516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings.
    Di Flumeri G; Borghini G; Aricò P; Sciaraffa N; Lanzi P; Pozzi S; Vignali V; Lantieri C; Bichicchi A; Simone A; Babiloni F
    Front Hum Neurosci; 2018; 12():509. PubMed ID: 30618686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Drivers' Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals.
    Cardone D; Perpetuini D; Filippini C; Mancini L; Nocco S; Tritto M; Rinella S; Giacobbe A; Fallica G; Ricci F; Gallina S; Merla A
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring drivers' mental workload in driving simulators using physiological measures.
    Brookhuis KA; de Waard D
    Accid Anal Prev; 2010 May; 42(3):898-903. PubMed ID: 20380918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral and Temporal Feature Learning With Two-Stream Neural Networks for Mental Workload Assessment.
    Zhang P; Wang X; Chen J; You W; Zhang W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1149-1159. PubMed ID: 31034417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Selection Model based on EEG Signals for Assessing the Cognitive Workload in Drivers.
    Becerra-Sánchez P; Reyes-Munoz A; Guerrero-Ibañez A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions.
    Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC
    Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences of drivers' reaction times according to age and mental workload.
    Makishita H; Matsunaga K
    Accid Anal Prev; 2008 Mar; 40(2):567-75. PubMed ID: 18329408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying Drivers' Cognitive Load Using EEG Signals.
    Barua S; Ahmed MU; Begum S
    Stud Health Technol Inform; 2017; 237():99-106. PubMed ID: 28479551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Automation on Drivers' Performance in Agricultural Semi-Autonomous Vehicles.
    Bashiri B; Mann DD
    J Agric Saf Health; 2015 Apr; 21(2):129-39. PubMed ID: 26204788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of variations in cognitive workload using multi-modality physiological sensors and a large margin unbiased regression machine.
    Zhang H; Zhu Y; Maniyeri J; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2985-8. PubMed ID: 25570618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experienced mental workload, perception of usability, their interaction and impact on task performance.
    Longo L
    PLoS One; 2018; 13(8):e0199661. PubMed ID: 30067747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an effective cross-task mental workload recognition model using electroencephalography based on feature selection and support vector machine regression.
    Ke Y; Qi H; Zhang L; Chen S; Jiao X; Zhou P; Zhao X; Wan B; Ming D
    Int J Psychophysiol; 2015 Nov; 98(2 Pt 1):157-66. PubMed ID: 26493860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical machine learning classification approach for secondary task identification from observed driving behavior data.
    Osman OA; Hajij M; Karbalaieali S; Ishak S
    Accid Anal Prev; 2019 Feb; 123():274-281. PubMed ID: 30554059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG Fingerprints of Task-Independent Mental Workload Discrimination.
    Kakkos I; Dimitrakopoulos GN; Sun Y; Yuan J; Matsopoulos GK; Bezerianos A; Sun Y
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3824-3833. PubMed ID: 34061753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Method for Classifying Driver Mental Workload Under Naturalistic Conditions With Information From Near-Infrared Spectroscopy.
    Le AS; Aoki H; Murase F; Ishida K
    Front Hum Neurosci; 2018; 12():431. PubMed ID: 30416438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Machine Learning Models for Three-Way Classification of Cognitive Workload Levels for Eye-Tracking Features.
    Kaczorowska M; Plechawska-Wójcik M; Tokovarov M
    Brain Sci; 2021 Feb; 11(2):. PubMed ID: 33572232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filter bank common spatial patterns in mental workload estimation.
    Arvaneh M; Umilta A; Robertson IH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4749-52. PubMed ID: 26737355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.