These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 32823632)

  • 21. Layering garments during rest and exercise in the cold (8°C): wearer responses and comparability with selected fabric properties.
    MacRae BA; Laing RM; Wilson CA; Niven BE
    Ergonomics; 2014; 57(2):271-81. PubMed ID: 24354777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System.
    Yang CQ; Chen Q
    Polymers (Basel); 2016 Sep; 8(9):. PubMed ID: 30974602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and performance evaluation of a firefighting protective suit with an incorporated liquid-cooled system.
    Yifan C; Yun S; Guangju L; Peijia Z; Miao T; Jun L
    Int J Occup Saf Ergon; 2024 Mar; 30(1):205-214. PubMed ID: 37422729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vapour transfer in two-layer clothing due to diffusion and ventilation.
    Lotens WA; Wammes LJ
    Ergonomics; 1993 Oct; 36(10):1223-40. PubMed ID: 8223411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the dual performance of thermal protective clothing with deformation under low radiant heat exposure.
    Zhu X; He J; Rui K; Zhou Q
    Int J Occup Saf Ergon; 2023 Sep; 29(3):1037-1046. PubMed ID: 35976071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of moisture content within multilayer protective clothing on protection from radiation and steam.
    Su Y; Li J; Song G
    Int J Occup Saf Ergon; 2018 Jun; 24(2):190-199. PubMed ID: 28427297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge.
    He J; Lu Y; Chen Y; Li J
    J Hazard Mater; 2017 Sep; 338():76-84. PubMed ID: 28531661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure prediction model for compression garment design.
    Leung WY; Yuen DW; Ng SP; Shi SQ
    J Burn Care Res; 2010; 31(5):716-27. PubMed ID: 20628306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.
    Mert E; Psikuta A; Bueno MA; Rossi RM
    Int J Biometeorol; 2015 Nov; 59(11):1701-10. PubMed ID: 25796204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporating Variable Porosity into the Determination of Effective Permeability in Interchanging Double Cloth Woven Fabrics Using Darcy's Law.
    Kalazić A; Badrov T; Schwarz I; Brnada S
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing.
    Qian X; Fan J
    Appl Ergon; 2009 Jul; 40(4):577-90. PubMed ID: 18835476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory evaluation of thermal protective clothing performance upon hot liquid splash.
    Gholamreza F; Song G
    Ann Occup Hyg; 2013 Jul; 57(6):805-22. PubMed ID: 23801030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic garments enhance comfort, thermoregulatory response, and athletic performance compared with traditional cotton garments.
    Hooper DR; Cook BM; Comstock BA; Szivak TK; Flanagan SD; Looney DP; DuPont WH; Kraemer WJ
    J Strength Cond Res; 2015 Mar; 29(3):700-7. PubMed ID: 25463694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of protective fabric systems with spacer fabric and performance evaluation upon hot pressurized steam.
    Pan M; Lu X; Lu Y; Chen G
    Int J Occup Saf Ergon; 2024 Jul; ():1-10. PubMed ID: 39031045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Burn properties of fabrics and garments worn in India.
    Bhalla SB; Kale SR; Mohan D
    Accid Anal Prev; 2000 May; 32(3):407-20. PubMed ID: 10776859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment.
    Guan M; Li J
    Int J Biometeorol; 2020 Mar; 64(3):485-499. PubMed ID: 32016640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clothing and exercise. II. Influence of clothing during exercise/work in environmental extremes.
    Pascoe DD; Bellingar TA; McCluskey BS
    Sports Med; 1994 Aug; 18(2):94-108. PubMed ID: 9132923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing Wildland Firefighters' Thermal Environment During Live-Fire Suppression.
    Carballo-Leyenda B; Villa JG; López-Satué J; Rodríguez-Marroyo JA
    Front Physiol; 2019; 10():949. PubMed ID: 31427982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Analysis of the Performance and Comfort Properties of Fire-Protective Material by Using Inherently Fire-Retardant Fibers and Knitting Structures.
    Khan AA; Jamshaid H; Mishra RK; Chandan V; Kolář V; Jirků P; Müller M; Nazari S; Alexiou Ivanova T; Hussain T
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum sustainable work rate for five protective clothing ensembles with respect to moisture vapor transmission rate and air permeability.
    Gonzalez NW; Bernard TE; Carroll NL; Bryner MA; Zeigler JP
    J Occup Environ Hyg; 2006 Feb; 3(2):80-6. PubMed ID: 16418081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.