BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32823800)

  • 1. The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat.
    Liu H; Bruning B; Garnett T; Berger B
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Leaf Nitrogen Content in Wheat Based on Fusion of Spectral Features and Deep Features from Near Infrared Hyperspectral Imagery.
    Yang B; Ma J; Yao X; Cao W; Zhu Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Development of Hyperspectral Distribution Maps to Predict the Content and Distribution of Nitrogen and Water in Wheat (
    Bruning B; Liu H; Brien C; Berger B; Lewis M; Garnett T
    Front Plant Sci; 2019; 10():1380. PubMed ID: 31737009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UAV-based hyperspectral analysis and spectral indices constructing for quantitatively monitoring leaf nitrogen content of winter wheat.
    Zhu H; Liu H; Xu Y; Guijun Y
    Appl Opt; 2018 Sep; 57(27):7722-7732. PubMed ID: 30462034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting dark respiration rates of wheat leaves from hyperspectral reflectance.
    Coast O; Shah S; Ivakov A; Gaju O; Wilson PB; Posch BC; Bryant CJ; Negrini ACA; Evans JR; Condon AG; Silva-Pérez V; Reynolds MP; Pogson BJ; Millar AH; Furbank RT; Atkin OK
    Plant Cell Environ; 2019 Jul; 42(7):2133-2150. PubMed ID: 30835839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral characteristic analysis for leaf nitrogen content in different growth stages of winter wheat.
    Haiying L; Hongchun Z
    Appl Opt; 2016 Dec; 55(34):D151-D161. PubMed ID: 27958448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nitrogen content inversion of wheat canopy leaf based on ground spectral reflectance data].
    Song X; Xu DY; Huang SM; Huang CC; Zhang SQ; Guo DD; Zhang KK; Yue K
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1636-1644. PubMed ID: 32530242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometric approaches for calibrating high-throughput spectral imaging setups to support digital plant phenotyping by calibrating and transferring spectral models from a point spectrometer.
    Mishra P
    Anal Chim Acta; 2021 Dec; 1187():339154. PubMed ID: 34753582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging.
    Yang Y; Nan R; Mi T; Song Y; Shi F; Liu X; Wang Y; Sun F; Xi Y; Zhang C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches.
    Stellacci AM; Castrignanò A; Troccoli A; Basso B; Buttafuoco G
    Environ Monit Assess; 2016 Mar; 188(3):199. PubMed ID: 26922749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat].
    Yao X; Zhu Y; Feng W; Tian YC; Cao WX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2191-5. PubMed ID: 19839336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early Visual Detection of Wheat Stripe Rust Using Visible/Near-Infrared Hyperspectral Imaging.
    Yao Z; Lei Y; He D
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating RGB Imaging and Multispectral Active and Hyperspectral Passive Sensing for Assessing Early Plant Vigor in Winter Wheat.
    Prey L; von Bloh M; Schmidhalter U
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-Nadir Hyperspectral Sensing for Estimation of Vertical Profile of Leaf Chlorophyll Content within Wheat Canopies.
    Kong W; Huang W; Casa R; Zhou X; Ye H; Dong Y
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Wheat leaf area index inversion using hyperspectral remote sensing technology].
    Liang L; Yang MH; Zhang LP; Lin H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jun; 31(6):1658-62. PubMed ID: 21847953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LeafSpec-Dicot: An Accurate and Portable Hyperspectral Imaging Device for Dicot Leaves.
    Li X; Chen Z; Wang J; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput phenotyping using digital and hyperspectral imaging-derived biomarkers for genotypic nitrogen response.
    Banerjee BP; Joshi S; Thoday-Kennedy E; Pasam RK; Tibbits J; Hayden M; Spangenberg G; Kant S
    J Exp Bot; 2020 Jul; 71(15):4604-4615. PubMed ID: 32185382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Monitoring canopy nitrogen status in winter wheat of growth anaphase with hyperspectral remote sensing].
    Tang Q; Li SK; Wang KR; Xie RZ; Chen B; Wang FY; Diao WY; Xiao CH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3061-6. PubMed ID: 21284184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Different Hyperspectral Variables for Diagnosing Leaf Nitrogen Accumulation in Wheat.
    Tan C; Du Y; Zhou J; Wang D; Luo M; Zhang Y; Guo W
    Front Plant Sci; 2018; 9():674. PubMed ID: 29881393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters.
    Sun T; Li Z; Wang Z; Liu Y; Zhu Z; Zhao Y; Xie W; Cui S; Chen G; Yang W; Zhang Z; Zhang F
    Plants (Basel); 2024 Jan; 13(1):. PubMed ID: 38202447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.