These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32823829)

  • 1. Modifying Wicking Speeds in Paper-Based Microfluidic Devices by Laser-Etching.
    Kalish B; Tan MK; Tsutsui H
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32823829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor.
    Modha S; Shen Y; Chamouni H; Mulchandani A; Tsutsui H
    Biosens Bioelectron; 2021 May; 180():113090. PubMed ID: 33662845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-treated glass platform for rapid wicking-driven transport and particle separation in bio microfluidics.
    Jiang H; Ochoa M; Rahimi R; Yu W; Ziaie B
    RSC Adv; 2019 Jun; 9(34):19531-19538. PubMed ID: 35519356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-ply channels for faster wicking in paper-based microfluidic devices.
    Camplisson CK; Schilling KM; Pedrotti WL; Stone HA; Martinez AW
    Lab Chip; 2015 Dec; 15(23):4461-6. PubMed ID: 26477676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Sensing Behavior of Three-Dimensional Microfluidic Paper-Based Analytical Devices (3D-μPADs) with Evaporation-Free Enclosed Channels for Point-of-Care Testing.
    Jeon J; Park C; Ponnuvelu DV; Park S
    Diagnostics (Basel); 2021 May; 11(6):. PubMed ID: 34071424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemp-Based Microfluidics.
    Temirel M; Dabbagh SR; Tasoglu S
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2.
    Lehmkuhl B; Noblitt SD; Krummel AT; Henry CS
    Lab Chip; 2015 Nov; 15(22):4364-8. PubMed ID: 26450455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Capillary-Driven Flow for Paper-Based Microfluidic Channels.
    Songok J; Toivakka M
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30523-30530. PubMed ID: 27750422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency.
    Tian J; Kannangara D; Li X; Shen W
    Lab Chip; 2010 Sep; 10(17):2258-64. PubMed ID: 20589291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper Stacks for Uniform Rehydration of Dried Reagents in Paper Microfluidic Devices.
    Das D; Dsouza A; Kaur N; Soni S; Toley BJ
    Sci Rep; 2019 Oct; 9(1):15755. PubMed ID: 31673060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of fully enclosed paper microfluidic devices using plasma deposition and etching.
    Raj N; Breedveld V; Hess DW
    Lab Chip; 2019 Oct; 19(19):3337-3343. PubMed ID: 31501838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.
    Kalish B; Tsutsui H
    J Vis Exp; 2016 Apr; (110):e53805. PubMed ID: 27077551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Features in Microfluidic Paper-Based Devices Made by Laser Cutting: How Small Can They Be?
    Mahmud MA; Blondeel EJM; Kaddoura M; MacDonald BD
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moulding of micropatterned nanocellulose films and their application in fluid handling.
    Browne C; Garnier G; Batchelor W
    J Colloid Interface Sci; 2021 Apr; 587():162-172. PubMed ID: 33360889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices.
    Fratzl M; Chang BS; Oyola-Reynoso S; Blaire G; Delshadi S; Devillers T; Ward T; Dempsey NM; Bloch JF; Thuo MM
    ACS Omega; 2018 Feb; 3(2):2049-2057. PubMed ID: 31458514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metering the capillary-driven flow of fluids in paper-based microfluidic devices.
    Noh H; Phillips ST
    Anal Chem; 2010 May; 82(10):4181-7. PubMed ID: 20411969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip.
    Ruiz-García I; Escobedo P; Ramos-Lorente CE; Erenas MM; Capitán-Vallvey LF; Carvajal MA; Palma AJ; López-Ruiz N
    Lab Chip; 2023 Sep; 23(18):4092-4103. PubMed ID: 37615614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-based microfluidic devices by asymmetric calendaring.
    Oyola-Reynoso S; Frankiewicz C; Chang B; Chen J; Bloch JF; Thuo MM
    Biomicrofluidics; 2017 Jan; 11(1):014104. PubMed ID: 28798839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.