These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 32823872)

  • 21. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance.
    Ni M; Ma W; Wang X; Gao M; Dai Y; Wei X; Zhang L; Peng Y; Chen S; Ding L; Tian Y; Li J; Wang H; Wang X; Xu G; Guo W; Yang Y; Wu Y; Heuberger S; Tabashnik BE; Zhang T; Zhu Z
    Plant Biotechnol J; 2017 Sep; 15(9):1204-1213. PubMed ID: 28199783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy.
    Kumar S; Chandra A; Pandey KC
    J Environ Biol; 2008 Sep; 29(5):641-53. PubMed ID: 19295059
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Geng J; Jiang J; Shu C; Wang Z; Song F; Geng L; Duan J; Zhang J
    Toxins (Basel); 2019 Jul; 11(8):. PubMed ID: 31349641
    [No Abstract]   [Full Text] [Related]  

  • 24. Cry78Aa, a novel Bacillus thuringiensis insecticidal protein with activity against Laodelphax striatellus and Nilaparvata lugens.
    Wang Y; Liu Y; Zhang J; Crickmore N; Song F; Gao J; Shu C
    J Invertebr Pathol; 2018 Oct; 158():1-5. PubMed ID: 30017953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities.
    Sellami S; Zghal T; Cherif M; Zalila-Kolsi I; Jaoua S; Jamoussi K
    J Basic Microbiol; 2013 Jun; 53(6):539-48. PubMed ID: 22915162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins.
    Lucena WA; Pelegrini PB; Martins-de-Sa D; Fonseca FC; Gomes JE; de Macedo LL; da Silva MC; Oliveira RS; Grossi-de-Sa MF
    Toxins (Basel); 2014 Aug; 6(8):2393-423. PubMed ID: 25123558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surge in insect resistance to transgenic crops and prospects for sustainability.
    Tabashnik BE; Carrière Y
    Nat Biotechnol; 2017 Oct; 35(10):926-935. PubMed ID: 29020006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin.
    Palma L; Muñoz D; Berry C; Murillo J; Caballero P
    Toxins (Basel); 2014 Apr; 6(5):1490-504. PubMed ID: 24784323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transgenic plants: an emerging approach to pest control.
    Estruch JJ; Carozzi NB; Desai N; Duck NB; Warren GW; Koziel MG
    Nat Biotechnol; 1997 Feb; 15(2):137-41. PubMed ID: 9035137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera.
    Chakrabarty S; Jin M; Wu C; Chakraborty P; Xiao Y
    Pest Manag Sci; 2020 May; 76(5):1612-1617. PubMed ID: 32103608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deletion mutant ndv200 of the Bacillus thuringiensis vip3BR insecticidal toxin gene is a prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insect damage.
    Gayen S; Samanta MK; Hossain MA; Mandal CC; Sen SK
    Planta; 2015 Jul; 242(1):269-81. PubMed ID: 25912191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advancement on chemical arsenal of
    Chattopadhyay P; Banerjee G
    3 Biotech; 2018 Apr; 8(4):201. PubMed ID: 29607282
    [No Abstract]   [Full Text] [Related]  

  • 33. Binding affinity and larvicidal activity of a novel vegetative insecticidal protein Vip3V.
    Doss VA
    Trop Biomed; 2009 Dec; 26(3):334-40. PubMed ID: 20237448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain.
    Grossi-de-Sa MF; Quezado de Magalhaes M; Silva MS; Silva SM; Dias SC; Nakasu EY; Brunetta PS; Oliveira GR; Neto OB; Sampaio de Oliveira R; Soares LH; Ayub MA; Siqueira HA; Figueira EL
    J Biochem Mol Biol; 2007 Sep; 40(5):773-82. PubMed ID: 17927912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control.
    Roh JY; Choi JY; Li MS; Jin BR; Je YH
    J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bt transgenic crops do not have favorable effects on resistant insects.
    Tabashnik BE; Carrière Y
    J Insect Sci; 2004; 4():4. PubMed ID: 15861220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.
    Dively GP; Venugopal PD; Finkenbinder C
    PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Bacillus thuringiensis: a biotechnology model].
    Sanchis V; Lereclus D
    J Soc Biol; 1999; 193(6):523-30. PubMed ID: 10783711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects.
    Dashora K; Roy S; Nagpal A; Roy SM; Flood J; Prasad AK; Khetarpal R; Neave S; Muraleedharan N
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1795-1803. PubMed ID: 28144706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.
    Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M
    Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.