These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32824015)
1. Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments. Trautmann A; Mori G; Oberndorfer M; Bauer S; Holzer C; Dittmann C Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824015 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure. Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel. Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341 [TBL] [Abstract][Full Text] [Related]
5. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum. Barrera O; Bombac D; Chen Y; Daff TD; Galindo-Nava E; Gong P; Haley D; Horton R; Katzarov I; Kermode JR; Liverani C; Stopher M; Sweeney F J Mater Sci; 2018; 53(9):6251-6290. PubMed ID: 31258179 [TBL] [Abstract][Full Text] [Related]
6. The Impact of Impurity Gases on the Hydrogen Embrittlement Behavior of Pipeline Steel in High-Pressure H Zhou C; Zhou H; Zhang L Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730963 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen embrittlement in ferritic steels. Martin ML; Connolly MJ; DelRio FW; Slifka AJ Appl Phys Rev; 2020; 7(4):. PubMed ID: 34122684 [TBL] [Abstract][Full Text] [Related]
8. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel. Kim SG; Kim JY; Hwang B Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging. Oh DK; Kim SG; Shin SH; Hwang B Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410457 [TBL] [Abstract][Full Text] [Related]
10. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners. Brahimi SV; Yue S; Sriraman KR Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607186 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels. Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740 [TBL] [Abstract][Full Text] [Related]
12. Effects of Al-Si Coating and Zn Coating on the Hydrogen Uptake and Embrittlement of Ultra-High Strength Press-Hardened Steel. Jo KR; Cho L; Sulistiyo DH; Seo EJ; Kim SW; De Cooman BC Surf Coat Technol; 2019; 374():. PubMed ID: 31579346 [TBL] [Abstract][Full Text] [Related]
13. Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels. Liu Q; Xu J; Shen L; Zhou Q; Su Y; Qiao L; Yan Y Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183111 [TBL] [Abstract][Full Text] [Related]
14. Change in Hydrogen Trapping Characteristics and Influence on Hydrogen Embrittlement Sensitivity in a Medium-Carbon, High-Strength Steel: The Effects of Heat Treatments. Tong Z; Wang H; Zheng W; Zhou H Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673211 [TBL] [Abstract][Full Text] [Related]
15. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels. Peral LB; Fernández-Pariente I; Colombo C; RodrÃguez C; Belzunce J Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423 [TBL] [Abstract][Full Text] [Related]
16. Influence of Thermal Treatment on SCC and HE Susceptibility of Supermartensitic Stainless Steel 16Cr5NiMo. Bacchi L; Biagini F; Corsinovi S; Romanelli M; Villa M; Valentini R Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32252282 [TBL] [Abstract][Full Text] [Related]
17. Effects of Alloying Elements (C, Mo) on Hydrogen Assisted Cracking Behaviors of A516-65 Steels in Sour Environments. Park JS; Lee JW; Hwang JK; Kim SJ Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967187 [TBL] [Abstract][Full Text] [Related]
18. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Chen YS; Lu H; Liang J; Rosenthal A; Liu H; Sneddon G; McCarroll I; Zhao Z; Li W; Guo A; Cairney JM Science; 2020 Jan; 367(6474):171-175. PubMed ID: 31919217 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen and deuterium charging of lifted-out specimens for atom probe tomography. Khanchandani H; Kim SH; Varanasi RS; Prithiv TS; Stephenson LT; Gault B Open Res Eur; 2021; 1():122. PubMed ID: 37645172 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen-related challenges for the steelmaker: the search for proper testing. Thiessen RG Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]