These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32824077)

  • 1. Control the System and Environment of Post-Production Wind Turbine Blade Waste Using Life Cycle Models. Part 1. Environmental Transformation Models.
    Piasecka I; Bałdowska-Witos P; Flizikowski J; Piotrowska K; Tomporowski A
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specification of Environmental Consequences of the Life Cycle of Selected Post-Production Waste of Wind Power Plants Blades.
    Piotrowska K; Piasecka I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2.
    Bałdowska-Witos P; Doerffer K; Pysz M; Doerffer P; Tomporowski A; Opielak M
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2.
    Doerffer K; Bałdowska-Witos P; Pysz M; Doerffer P; Tomporowski A
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33466317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wind turbine blade wastes and the environmental impacts in Canada.
    Heng H; Meng F; McKechnie J
    Waste Manag; 2021 Sep; 133():59-70. PubMed ID: 34385121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the Life Cycle of a Wind and Photovoltaic Power Plant in the Context of Sustainable Development of Energy Systems.
    Piotrowska K; Piasecka I; Kłos Z; Marczuk A; Kasner R
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050.
    Lichtenegger G; Rentizelas AA; Trivyza N; Siegl S
    Waste Manag; 2020 Apr; 106():120-131. PubMed ID: 32203899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental impact and waste recycling technologies for modern wind turbines: An overview.
    Rathore N; Panwar NL
    Waste Manag Res; 2023 Apr; 41(4):744-759. PubMed ID: 36382768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of both resin and fibre from wind turbine blade waste via small molecule-assisted dissolution.
    Muzyka R; Sobek S; Korytkowska-Wałach A; Drewniak Ł; Sajdak M
    Sci Rep; 2023 Jun; 13(1):9270. PubMed ID: 37286809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European Union.
    Sommer V; Stockschläder J; Walther G
    Waste Manag; 2020 Sep; 115():83-94. PubMed ID: 32731137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A life cycle assessment of the laboratory-scale oxidative liquefaction as the chemical recycling method of the end-of-life wind turbine blades.
    Sobek S; Lombardi L; Mendecka B; Mumtaz H; Sajdak M; Muzyka R; Werle S
    J Environ Manage; 2024 Jun; 361():121241. PubMed ID: 38805962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life cycle assessment of the use of decommissioned wind blades in second life applications.
    Nagle AJ; Mullally G; Leahy PG; Dunphy NP
    J Environ Manage; 2022 Jan; 302(Pt A):113994. PubMed ID: 34741945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-Waste Recycling of Fiber/Epoxy from Scrap Wind Turbine Blades for Effective Resource Utilization.
    Du C; Jin G; Zhang L; Tong B; Wang B; Zhang G; Cheng Y
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforced wind turbine blades--an environmental life cycle evaluation.
    Merugula L; Khanna V; Bakshi BR
    Environ Sci Technol; 2012 Sep; 46(17):9785-92. PubMed ID: 22857256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the best possible methods for wind turbine blade waste management by using GIS and FAHP: Turkey case.
    Ozturk S; Karipoglu F
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):15020-15033. PubMed ID: 36168016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment.
    Upadhyayula VKK; Gadhamshetty V; Athanassiadis D; Tysklind M; Meng F; Pan Q; Cullen JM; Yacout DMM
    Environ Sci Technol; 2022 Jan; 56(2):1267-1277. PubMed ID: 34981927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsustainable Wind Turbine Blade Disposal Practices in the United States.
    Ramirez-Tejeda K; Turcotte DA; Pike S
    New Solut; 2017 Feb; 26(4):581-598. PubMed ID: 27794074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular life cycle assessment of municipal solid waste management.
    Haupt M; Kägi T; Hellweg S
    Waste Manag; 2018 Sep; 79():815-827. PubMed ID: 29861114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of energy and carbon fibre from wind turbine blades waste (carbon fibre/unsaturated polyester resin) using pyrolysis process and its life-cycle assessment.
    Yousef S; Eimontas J; Stasiulaitiene I; Zakarauskas K; Striūgas N
    Environ Res; 2024 Mar; 245():118016. PubMed ID: 38154563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.