These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32824128)
1. Spatial Distribution Evolution of Residual Stress and Microstructure in Laser-Peen-Formed Plates. Zhang Z; Huang W; Lu G; Zhang Y Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824128 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic Non-Destructive Detection Method for Residual Stress in Rotary Forging Aluminum Alloy Plates. Chen H; Wang X; Han X; Zheng F; Yan W Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893792 [TBL] [Abstract][Full Text] [Related]
3. Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior. Sun R; Cao Z; Zhang Y; Zhang H; Yu Y; Che Z; Wu J; Zou S; Guo W Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652572 [TBL] [Abstract][Full Text] [Related]
4. Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement. Khandaker M; Riahinezhad S; Sultana F; Vaughan MB; Knight J; Morris TL Int J Nanomedicine; 2016; 11():585-94. PubMed ID: 26893563 [TBL] [Abstract][Full Text] [Related]
5. Development of Maximum Residual Stress Prediction Technique for Shot-Peened Specimen Using Rayleigh Wave Dispersion Data Based on Convolutional Neural Network. Choi YW; Lee TG; Yeom YT; Kwon SD; Kim HH; Lee KY; Kim HJ; Song SJ Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068150 [TBL] [Abstract][Full Text] [Related]
6. A Novel Approach for Analyzing the Effects of Almen Intensity on the Residual Stress and Hardness of Shot-Peened (TiB + TiC)/Ti-6Al-4V Composite: Deep Learning. Maleki E; Unal O; Seyedi Sahebari SM; Reza Kashyzadeh K Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445007 [TBL] [Abstract][Full Text] [Related]
7. Investigations into the Improvement of the Mechanical Properties of Ti-5Al-4Mo-4Cr-2Sn-2Zr Titanium Alloy by Using Low Energy Laser Peening without Coating. Xue D; Jiao Y; He W; Shen X; Gao Y; Wang L Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32204483 [TBL] [Abstract][Full Text] [Related]
8. Optimization of Residual Stress Measurement Conditions for a 2D Method Using X-ray Diffraction and Its Application for Stainless Steel Treated by Laser Cavitation Peening. Soyama H; Kuji C; Kuriyagawa T; Chighizola CR; Hill MR Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073673 [TBL] [Abstract][Full Text] [Related]
9. An Improved Approach to Direct Simulation of an Actual Almen Shot Peening Intensity Test with a Large Number of Shots. Wang C; Li W; Jiang J; Chao X; Zeng W; Xu J; Yang J Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33187269 [TBL] [Abstract][Full Text] [Related]
10. On the Microstructure, Residual Stress and Fatigue Performance of Laser Metal Deposited TC17 Alloy Subjected to Laser Shock Peening. An Z; He W; Zhou X; Zhou L; Nie X Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143811 [TBL] [Abstract][Full Text] [Related]
11. An Analytical Model for Estimating the Bending Curvatures of Metal Sheets in Laser Peen Forming. Ye Y; Nie Z; Huang X; Ren X; Li L Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477913 [TBL] [Abstract][Full Text] [Related]
12. On the Surface Residual Stress Measurement in Magnesium Alloys Using X-Ray Diffraction. Yazdanmehr A; Jahed H Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212922 [TBL] [Abstract][Full Text] [Related]
13. Study on the influence of shot peening strengthening before shot peen forming on 2024-T351 aluminum alloy fatigue crack growth rate. Li G; Dong Z; Luo T; Huang H Sci Rep; 2023 Mar; 13(1):5313. PubMed ID: 37002324 [TBL] [Abstract][Full Text] [Related]
14. Impact on Mechanical Properties and Microstructural Response of Nickel-Based Superalloy GH4169 Subjected to Warm Laser Shock Peening. Lu Y; Yang Y; Zhao J; Yang Y; Qiao H; Hu X; Wu J; Sun B Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207847 [TBL] [Abstract][Full Text] [Related]
15. Using an artificial neural network to predict the residual stress induced by laser shock processing. Wu J; Liu X; Qiao H; Zhao Y; Hu X; Yang Y; Zhao J Appl Opt; 2021 Apr; 60(11):3114-3121. PubMed ID: 33983208 [TBL] [Abstract][Full Text] [Related]
16. Fatigue Limit of Custom 465 with Surface Strengthening Treatment. An G; Liu RJ; Yin GQ Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935829 [TBL] [Abstract][Full Text] [Related]
17. FIB-DIC Residual Stress Evaluation in Shot Peened VT6 Alloy Validated by X-ray Diffraction and Laser Speckle Interferometry. Somov PA; Statnik ES; Kan Y; Pisarev VS; Eleonsky SI; Ozherelkov DY; Salimon AI Nanomaterials (Basel); 2022 Apr; 12(7):. PubMed ID: 35407353 [TBL] [Abstract][Full Text] [Related]
18. Effects of growth on residual stress distribution along the radial depth of cortical cylinders from bovine femurs. Yamada S; Tadano S J Biomech; 2013 Sep; 46(13):2130-6. PubMed ID: 23895894 [TBL] [Abstract][Full Text] [Related]
19. Experimental and Numerical Simulation to Study the Reduction of Welding Residual Stress by Ultrasonic Impact Treatment. Chen J; Chu J; Jiang W; Yao B; Zhou F; Wang Z; Zhao P Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32059582 [TBL] [Abstract][Full Text] [Related]
20. Lateral gradients of phases, residual stress and hardness in a laser heated Ti Bartosik M; Daniel R; Zhang Z; Deluca M; Ecker W; Stefenelli M; Klaus M; Genzel C; Mitterer C; Keckes J Surf Coat Technol; 2012 Jun; 206(22):4502-4510. PubMed ID: 23471140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]