These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32824292)

  • 1. Engineering the Unicellular Alga
    Manfellotto F; Stella GR; Falciatore A; Brunet C; Ferrante MI
    Antioxidants (Basel); 2020 Aug; 9(8):. PubMed ID: 32824292
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Græsholt C; Brembu T; Volpe C; Bartosova Z; Serif M; Winge P; Nymark M
    Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum.
    Eilers U; Dietzel L; Breitenbach J; Büchel C; Sandmann G
    J Plant Physiol; 2016 Mar; 192():64-70. PubMed ID: 26851888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum.
    Kadono T; Kira N; Suzuki K; Iwata O; Ohama T; Okada S; Nishimura T; Akakabe M; Tsuda M; Adachi M
    Mar Drugs; 2015 Aug; 13(8):5334-57. PubMed ID: 26308005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of PtVDL1 in
    Seo S; Chang KS; Choi MS; Jin E
    J Microbiol Biotechnol; 2024 Jan; 34(1):198-206. PubMed ID: 37957112
    [No Abstract]   [Full Text] [Related]  

  • 6. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.
    Coesel S; Oborník M; Varela J; Falciatore A; Bowler C
    PLoS One; 2008 Aug; 3(8):e2896. PubMed ID: 18682837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum.
    Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W
    Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin.
    Bai Y; Cao T; Dautermann O; Buschbeck P; Cantrell MB; Chen Y; Lein CD; Shi X; Ware MA; Yang F; Zhang H; Zhang L; Peers G; Li X; Lohr M
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2203708119. PubMed ID: 36095219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum.
    Hao TB; Lu Y; Zhang ZH; Liu SF; Wang X; Yang WD; Balamurugan S; Li HY
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8783-8793. PubMed ID: 34741642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae).
    Fierli D; Barone ME; Graceffa V; Touzet N
    Bioprocess Biosyst Eng; 2022 Dec; 45(12):1967-1977. PubMed ID: 36264371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom
    Yang R; Wei D
    Front Bioeng Biotechnol; 2020; 8():820. PubMed ID: 32760713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum.
    Gille A; Hollenbach R; Trautmann A; Posten C; Briviba K
    Food Res Int; 2019 Apr; 118():40-48. PubMed ID: 30898351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
    Lohr M; Wilhelm C
    Planta; 2001 Feb; 212(3):382-91. PubMed ID: 11289603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoid profiling of five microalgae species from large-scale production.
    Di Lena G; Casini I; Lucarini M; Lombardi-Boccia G
    Food Res Int; 2019 Jun; 120():810-818. PubMed ID: 31000301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.
    Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W
    Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A key gene, violaxanthin de-epoxidase-like 1, enhances fucoxanthin accumulation in Phaeodactylum tricornutum.
    Li C; Pan Y; Yin W; Liu J; Hu H
    Biotechnol Biofuels Bioprod; 2024 Apr; 17(1):49. PubMed ID: 38566219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fucoxanthin, A Carotenoid Derived from
    Neumann U; Derwenskus F; Flaiz Flister V; Schmid-Staiger U; Hirth T; Bischoff SC
    Antioxidants (Basel); 2019 Jun; 8(6):. PubMed ID: 31248073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediator subunit MED8 interacts with heat shock transcription factor HSF3 to promote fucoxanthin synthesis in the diatom Phaeodactylum tricornutum.
    Zhao H; Liu Y; Zhu Z; Feng Q; Ye Y; Zhang J; Han J; Zhou C; Xu J; Yan X; Li X
    New Phytol; 2024 Feb; 241(4):1574-1591. PubMed ID: 38062856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Nitrate Supplementation in
    Afonso C; Bragança AR; Rebelo BA; Serra TS; Abranches R
    Foods; 2022 Feb; 11(4):. PubMed ID: 35206051
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of
    Fan S; Li Y; Wang Q; Jin M; Yu M; Zhao H; Zhou C; Xu J; Li B; Li X
    Appl Environ Microbiol; 2024 Jun; 90(6):e0206823. PubMed ID: 38786362
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.