BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32824292)

  • 1. Engineering the Unicellular Alga
    Manfellotto F; Stella GR; Falciatore A; Brunet C; Ferrante MI
    Antioxidants (Basel); 2020 Aug; 9(8):. PubMed ID: 32824292
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Græsholt C; Brembu T; Volpe C; Bartosova Z; Serif M; Winge P; Nymark M
    Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum.
    Eilers U; Dietzel L; Breitenbach J; Büchel C; Sandmann G
    J Plant Physiol; 2016 Mar; 192():64-70. PubMed ID: 26851888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum.
    Kadono T; Kira N; Suzuki K; Iwata O; Ohama T; Okada S; Nishimura T; Akakabe M; Tsuda M; Adachi M
    Mar Drugs; 2015 Aug; 13(8):5334-57. PubMed ID: 26308005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of PtVDL1 in
    Seo S; Chang KS; Choi MS; Jin E
    J Microbiol Biotechnol; 2024 Jan; 34(1):198-206. PubMed ID: 37957112
    [No Abstract]   [Full Text] [Related]  

  • 6. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.
    Coesel S; Oborník M; Varela J; Falciatore A; Bowler C
    PLoS One; 2008 Aug; 3(8):e2896. PubMed ID: 18682837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum.
    Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W
    Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin.
    Bai Y; Cao T; Dautermann O; Buschbeck P; Cantrell MB; Chen Y; Lein CD; Shi X; Ware MA; Yang F; Zhang H; Zhang L; Peers G; Li X; Lohr M
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2203708119. PubMed ID: 36095219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum.
    Hao TB; Lu Y; Zhang ZH; Liu SF; Wang X; Yang WD; Balamurugan S; Li HY
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8783-8793. PubMed ID: 34741642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae).
    Fierli D; Barone ME; Graceffa V; Touzet N
    Bioprocess Biosyst Eng; 2022 Dec; 45(12):1967-1977. PubMed ID: 36264371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom
    Yang R; Wei D
    Front Bioeng Biotechnol; 2020; 8():820. PubMed ID: 32760713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum.
    Gille A; Hollenbach R; Trautmann A; Posten C; Briviba K
    Food Res Int; 2019 Apr; 118():40-48. PubMed ID: 30898351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
    Lohr M; Wilhelm C
    Planta; 2001 Feb; 212(3):382-91. PubMed ID: 11289603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoid profiling of five microalgae species from large-scale production.
    Di Lena G; Casini I; Lucarini M; Lombardi-Boccia G
    Food Res Int; 2019 Jun; 120():810-818. PubMed ID: 31000301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.
    Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W
    Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A key gene, violaxanthin de-epoxidase-like 1, enhances fucoxanthin accumulation in Phaeodactylum tricornutum.
    Li C; Pan Y; Yin W; Liu J; Hu H
    Biotechnol Biofuels Bioprod; 2024 Apr; 17(1):49. PubMed ID: 38566219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fucoxanthin, A Carotenoid Derived from
    Neumann U; Derwenskus F; Flaiz Flister V; Schmid-Staiger U; Hirth T; Bischoff SC
    Antioxidants (Basel); 2019 Jun; 8(6):. PubMed ID: 31248073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mediator subunit MED8 interacts with heat shock transcription factor HSF3 to promote fucoxanthin synthesis in the diatom Phaeodactylum tricornutum.
    Zhao H; Liu Y; Zhu Z; Feng Q; Ye Y; Zhang J; Han J; Zhou C; Xu J; Yan X; Li X
    New Phytol; 2024 Feb; 241(4):1574-1591. PubMed ID: 38062856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Nitrate Supplementation in
    Afonso C; Bragança AR; Rebelo BA; Serra TS; Abranches R
    Foods; 2022 Feb; 11(4):. PubMed ID: 35206051
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of
    Fan S; Li Y; Wang Q; Jin M; Yu M; Zhao H; Zhou C; Xu J; Li B; Li X
    Appl Environ Microbiol; 2024 Jun; 90(6):e0206823. PubMed ID: 38786362
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.