These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 32824336)

  • 1. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview.
    Fan Q; Neubauer P; Lenz O; Gimpel M
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-free synthesis and maturation of [FeFe] hydrogenases.
    Boyer ME; Stapleton JA; Kuchenreuther JM; Wang CW; Swartz JR
    Biotechnol Bioeng; 2008 Jan; 99(1):59-67. PubMed ID: 17546685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atypical effect of temperature tuning on the insertion of the catalytic iron-sulfur center in a recombinant [FeFe]-hydrogenase.
    Morra S; Cordara A; Gilardi G; Valetti F
    Protein Sci; 2015 Dec; 24(12):2090-4. PubMed ID: 26362685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using directed evolution to improve hydrogen production in chimeric hydrogenases from Clostridia species.
    Plummer SM; Plummer MA; Merkel PA; Hagen M; Biddle JF; Waidner LA
    Enzyme Microb Technol; 2016 Nov; 93-94():132-141. PubMed ID: 27702473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Recent advances on the structure and catalytic mechanism of hydrogenase].
    Liu JJ; Long MN
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):348-53. PubMed ID: 16108354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli.
    Kuchenreuther JM; Grady-Smith CS; Bingham AS; George SJ; Cramer SP; Swartz JR
    PLoS One; 2010 Nov; 5(11):e15491. PubMed ID: 21124800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor.
    Czech I; Silakov A; Lubitz W; Happe T
    FEBS Lett; 2010 Feb; 584(3):638-42. PubMed ID: 20018187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [FeFe]-Hydrogenases: recent developments and future perspectives.
    Wittkamp F; Senger M; Stripp ST; Apfel UP
    Chem Commun (Camb); 2018 Jun; 54(47):5934-5942. PubMed ID: 29726568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The maturase HydF enables [FeFe] hydrogenase assembly via transient, cofactor-dependent interactions.
    Németh B; Land H; Magnuson A; Hofer A; Berggren G
    J Biol Chem; 2020 Aug; 295(33):11891-11901. PubMed ID: 32620553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maturation of hydrogenases.
    Böck A; King PW; Blokesch M; Posewitz MC
    Adv Microb Physiol; 2006; 51():1-71. PubMed ID: 17091562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor.
    Winkler M; Esselborn J; Happe T
    Biochim Biophys Acta; 2013; 1827(8-9):974-85. PubMed ID: 23507618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments.
    Tai H; Hirota S
    Chembiochem; 2020 Jun; 21(11):1573-1581. PubMed ID: 32180334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.
    Nagy LE; Meuser JE; Plummer S; Seibert M; Ghirardi ML; King PW; Ahmann D; Posewitz MC
    Biotechnol Lett; 2007 Mar; 29(3):421-30. PubMed ID: 17195059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation.
    Noth J; Kositzki R; Klein K; Winkler M; Haumann M; Happe T
    Sci Rep; 2015 Sep; 5():13978. PubMed ID: 26364994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode.
    Morra S; Valetti F; Sadeghi SJ; King PW; Meyer T; Gilardi G
    Chem Commun (Camb); 2011 Oct; 47(38):10566-8. PubMed ID: 21863186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF.
    Shepard EM; Byer AS; Betz JN; Peters JW; Broderick JB
    Biochemistry; 2016 Jun; 55(25):3514-27. PubMed ID: 27232385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.