These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 32824479)
21. Interactions between human osteoblasts and prostate cancer cells in a novel 3D in vitro model. Sieh S; Lubik AA; Clements JA; Nelson CC; Hutmacher DW Organogenesis; 2010; 6(3):181-8. PubMed ID: 21197221 [TBL] [Abstract][Full Text] [Related]
22. Novel Phenotypic Fluorescent Three-Dimensional Co-Culture Platforms for Recapitulating Tumor in vivo Progression and for Personalized Therapy. Fang C; Man YG; Cuttitta F; Stetler-Stevenson W; Salomon D; Mazar A; Kulesza P; Rosen S; Avital I; Stojadinovic A; Jewett A; Jiang B; Mulshine J J Cancer; 2013; 4(9):755-63. PubMed ID: 24312145 [TBL] [Abstract][Full Text] [Related]
23. 3d tissue models as tools for radiotherapy screening for pancreatic cancer. Wishart G; Gupta P; Schettino G; Nisbet A; Velliou E Br J Radiol; 2021 Apr; 94(1120):20201397. PubMed ID: 33684308 [TBL] [Abstract][Full Text] [Related]
24. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM Elife; 2020 Nov; 9():. PubMed ID: 33138918 [TBL] [Abstract][Full Text] [Related]
25. Bioengineered Efficacy Models of Skin Disease: Advances in the Last 10 Years. Stanton DN; Ganguli-Indra G; Indra AK; Karande P Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35214050 [TBL] [Abstract][Full Text] [Related]
26. 3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment. Vanderburgh JP; Guelcher SA; Sterling JA J Cell Biochem; 2018 Jul; 119(7):5053-5059. PubMed ID: 29600556 [TBL] [Abstract][Full Text] [Related]
27. Modeling nasopharyngeal carcinoma in three dimensions. Siva Sankar P; Che Mat MF; Muniandy K; Xiang BLS; Ling PS; Hoe SLL; Khoo AS; Mohana-Kumaran N Oncol Lett; 2017 Apr; 13(4):2034-2044. PubMed ID: 28454359 [TBL] [Abstract][Full Text] [Related]
28. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Pozzi S; Scomparin A; Israeli Dangoor S; Rodriguez Ajamil D; Ofek P; Neufeld L; Krivitsky A; Vaskovich-Koubi D; Kleiner R; Dey P; Koshrovski-Michael S; Reisman N; Satchi-Fainaro R Adv Drug Deliv Rev; 2021 Aug; 175():113760. PubMed ID: 33838208 [TBL] [Abstract][Full Text] [Related]
29. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells. Herroon MK; Diedrich JD; Podgorski I Front Endocrinol (Lausanne); 2016; 7():84. PubMed ID: 27458427 [TBL] [Abstract][Full Text] [Related]
30. Protocols and characterization data for 2D, 3D, and slice-based tumor models from the PREDECT project. de Hoogt R; Estrada MF; Vidic S; Davies EJ; Osswald A; Barbier M; Santo VE; Gjerde K; van Zoggel HJAA; Blom S; Dong M; Närhi K; Boghaert E; Brito C; Chong Y; Sommergruber W; van der Kuip H; van Weerden WM; Verschuren EW; Hickman J; Graeser R Sci Data; 2017 Nov; 4():170170. PubMed ID: 29160867 [TBL] [Abstract][Full Text] [Related]
31. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Kamatar A; Gunay G; Acar H Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33126468 [TBL] [Abstract][Full Text] [Related]
32. Engineering 3D approaches to model the dynamic microenvironments of cancer bone metastasis. Qiao H; Tang T Bone Res; 2018; 6():3. PubMed ID: 29507817 [TBL] [Abstract][Full Text] [Related]
33. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells. Simão D; Arez F; Terasso AP; Pinto C; Sousa MF; Brito C; Alves PM Methods Mol Biol; 2016; 1502():129-42. PubMed ID: 27032948 [TBL] [Abstract][Full Text] [Related]
34. Patient-Derived Multiple Myeloma 3D Models for Personalized Medicine-Are We There Yet? Lourenço D; Lopes R; Pestana C; Queirós AC; João C; Carneiro EA Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361677 [TBL] [Abstract][Full Text] [Related]
35. Calcium phosphate scaffolds with defined interconnecting channel structure provide a mimetic 3D niche for bone marrow metastasized tumor cell growth. Aveic S; Davtalab R; Vogt M; Weber M; Buttler P; Tonini GP; Fischer H Acta Biomater; 2019 Apr; 88():527-539. PubMed ID: 30797105 [TBL] [Abstract][Full Text] [Related]
36. Heralding a new paradigm in 3D tumor modeling. Fong EL; Harrington DA; Farach-Carson MC; Yu H Biomaterials; 2016 Nov; 108():197-213. PubMed ID: 27639438 [TBL] [Abstract][Full Text] [Related]
37. 3D bioprinting as an emerging standard for cancer modeling and drug testing. Molander D; Sbirkov Y; Sarafian V Folia Med (Plovdiv); 2022 Aug; 64(4):559-565. PubMed ID: 36045467 [TBL] [Abstract][Full Text] [Related]
38. Modeling the Human Bone-Tumor Niche: Reducing and Replacing the Need for Animal Data. Rao SR; Edwards CM; Edwards JR JBMR Plus; 2020 Apr; 4(4):e10356. PubMed ID: 32258970 [TBL] [Abstract][Full Text] [Related]
39. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623 [TBL] [Abstract][Full Text] [Related]
40. 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Brancato V; Gioiella F; Imparato G; Guarnieri D; Urciuolo F; Netti PA Acta Biomater; 2018 Jul; 75():200-212. PubMed ID: 29864516 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]