These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 32824554)
1. Ultrafine Pd Nanoparticles Supported on Soft Nitriding Porous Carbon for Hydrogen Production from Hydrolytic Dehydrogenation of Dimethyl Amine-Borane. Wen Z; Fu Q; Wu J; Fan G Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32824554 [TBL] [Abstract][Full Text] [Related]
2. Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Özkar S J Colloid Interface Sci; 2022 Nov; 626():752-758. PubMed ID: 35820210 [TBL] [Abstract][Full Text] [Related]
3. Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Xi P; Chen F; Xie G; Ma C; Liu H; Shao C; Wang J; Xu Z; Xu X; Zeng Z Nanoscale; 2012 Sep; 4(18):5597-601. PubMed ID: 22732933 [TBL] [Abstract][Full Text] [Related]
4. A simple and straightforward strategy for synthesis of N,P co-doped porous carbon: an efficient support for Rh nanoparticles for dehydrogenation of ammonia borane and catalytic application. Luo W; Zhao X; Cheng W; Zhang Y; Wang Y; Fan G Nanoscale Adv; 2020 Apr; 2(4):1685-1693. PubMed ID: 36132330 [TBL] [Abstract][Full Text] [Related]
5. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane. Guo K; Li H; Yu Z ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479 [TBL] [Abstract][Full Text] [Related]
6. In situ prepared tungsten(VI) oxide supported Pd0 NPs, remarkable activity and reusability in H2 releasing from dimethylamine borane. Karaboğa S Turk J Chem; 2022; 46(2):394-403. PubMed ID: 38143470 [TBL] [Abstract][Full Text] [Related]
7. Graphene-Supported Trimetallic Core-Shell Cu@CoNi Nanoparticles for Catalytic Hydrolysis of Amine Borane. Meng X; Yang L; Cao N; Du C; Hu K; Su J; Luo W; Cheng G Chempluschem; 2014 Feb; 79(2):325-332. PubMed ID: 31986590 [TBL] [Abstract][Full Text] [Related]
8. Ultrafine Ni-MoO Liu W; Yao L; Sun X; Wang W; Feng G; Yao Q; Zhang L; Lu ZH ChemSusChem; 2024 May; 17(9):e202400415. PubMed ID: 38482550 [TBL] [Abstract][Full Text] [Related]
9. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane. Yang L; Luo W; Cheng G ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435 [TBL] [Abstract][Full Text] [Related]
10. Carbon-nanotube-based rhodium nanoparticles as highly-active catalyst for hydrolytic dehydrogenation of dimethylamineborane at room temperature. Günbatar S; Aygun A; Karataş Y; Gülcan M; Şen F J Colloid Interface Sci; 2018 Nov; 530():321-327. PubMed ID: 29982024 [TBL] [Abstract][Full Text] [Related]
11. Facile Synthesis of Monodispersed Co Nanoparticles on Titanium Carbides for Hydrolysis of Ammonia Borane at Mild Temperature. Liu T; Wang QT; Sun YH; Zhao M J Nanosci Nanotechnol; 2019 Nov; 19(11):7392-7397. PubMed ID: 31039902 [TBL] [Abstract][Full Text] [Related]
12. In Situ Formation of AgCo Stabilized on Graphitic Carbon Nitride and Concomitant Hydrolysis of Ammonia Borane to Hydrogen. Wang Q; Xu C; Ming M; Yang Y; Xu B; Wang Y; Zhang Y; Wu J; Fan G Nanomaterials (Basel); 2018 Apr; 8(5):. PubMed ID: 29701660 [TBL] [Abstract][Full Text] [Related]
13. Carbon supported Pd based catalysts for the hydrolytic dehydrogeneration of morpholine borane. Gulbay SK; Kaymaz M; Gulbagca F; Sen F Chemosphere; 2022 Dec; 309(Pt 1):136674. PubMed ID: 36195122 [TBL] [Abstract][Full Text] [Related]
14. Highly efficient monodisperse Pt nanoparticles confined in the carbon black hybrid material for hydrogen liberation. Sen B; Şavk A; Sen F J Colloid Interface Sci; 2018 Jun; 520():112-118. PubMed ID: 29529458 [TBL] [Abstract][Full Text] [Related]
15. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Gao M; Yu Y; Yang W; Li J; Xu S; Feng M; Li H Nanoscale; 2019 Feb; 11(8):3506-3513. PubMed ID: 30741302 [TBL] [Abstract][Full Text] [Related]
16. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation. Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361 [TBL] [Abstract][Full Text] [Related]
17. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Tonbul Y; Özkar S Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757 [TBL] [Abstract][Full Text] [Related]
18. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis. Yao K; Zhao C; Wang N; Li T; Lu W; Wang J Nanoscale; 2020 Jan; 12(2):638-647. PubMed ID: 31829363 [TBL] [Abstract][Full Text] [Related]
19. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH) Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636 [TBL] [Abstract][Full Text] [Related]
20. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature. Mondal J; Trinh QT; Jana A; Ng WK; Borah P; Hirao H; Zhao Y ACS Appl Mater Interfaces; 2016 Jun; 8(24):15307-19. PubMed ID: 27258184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]