BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32824554)

  • 21. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Zhang Z; Chen X; Lan Y
    Sci Rep; 2014 Dec; 4():7597. PubMed ID: 25534772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes.
    Cao N; Su J; Hong X; Luo W; Cheng G
    Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surfactant-Free Synthesis of Carbon-Supported Palladium Nanoparticles and Size-Dependent Hydrogen Production from Formic Acid-Formate Solution.
    Zhang S; Jiang B; Jiang K; Cai WB
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24678-24687. PubMed ID: 28658569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrafine Pt nanoparticles anchored on core-shell structured zeolite-carbon for efficient catalysis of hydrogen generation.
    Wei YW; Yang G; Xu XX; Liu YY; Li BJ; Wang YZ; Zhao YX
    RSC Adv; 2023 Mar; 13(11):7673-7681. PubMed ID: 36908540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane.
    Manna J; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2017 Dec; 508():359-368. PubMed ID: 28843925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane.
    Yao Q; Lu ZH; Yang K; Chen X; Zhu M
    Sci Rep; 2015 Oct; 5():15186. PubMed ID: 26471355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach.
    Zhu QL; Tsumori N; Xu Q
    J Am Chem Soc; 2015 Sep; 137(36):11743-8. PubMed ID: 26323169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen production from the catalytic dehydrogenation of dodecahydro-N-ethylcarbazole: effect of Pd precursor on the catalytic performance of Pd/C catalysts.
    Feng Z; Chen X; Bai X
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):61623-61635. PubMed ID: 34184219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly monodispersed palladium-ruthenium alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) for dehydrocoupling of dimethylamine-borane: An experimental and density functional theory study.
    Sen B; Aygün A; Ferdi Fellah M; Harbi Calimli M; Sen F
    J Colloid Interface Sci; 2019 Jun; 546():83-91. PubMed ID: 30903812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2019 Oct; 553():581-587. PubMed ID: 31238228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetically Isolable Pt
    Akbayrak S; Özkar S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34341-34348. PubMed ID: 34255473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Özkar S
    J Colloid Interface Sci; 2021 Aug; 596():100-107. PubMed ID: 33838323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafine Pd Nanoparticles Anchored on Nitrogen-Doping Carbon for Boosting Catalytic Transfer Hydrogenation of Nitroarenes.
    Zhang L; Liu X; Zhou X; Gao S; Shang N; Feng C; Wang C
    ACS Omega; 2018 Sep; 3(9):10843-10850. PubMed ID: 31459196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft" Nitriding.
    Liu B; Yao H; Song W; Jin L; Mosa IM; Rusling JF; Suib SL; He J
    J Am Chem Soc; 2016 Apr; 138(14):4718-21. PubMed ID: 27014928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alkaline ultrasonic irradiation-mediated boosted H
    Wang S; Guo A; Peng Y; Wang Y; Long Y; Fan G
    J Colloid Interface Sci; 2022 Apr; 612():57-65. PubMed ID: 34974258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphine-Built-in Porous Organic Cage for Stabilization and Boosting the Catalytic Performance of Palladium Nanoparticles in Cross-Coupling of Aryl Halides.
    Wang Z; Reddy CB; Zhou X; Ibrahim JJ; Yang Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53141-53149. PubMed ID: 33175493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime.
    Cai HK; Jiang ZY; Xu S; Xu Y; Lu P; Dong J
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core-Shell Nanoparticles.
    Yurderi M; Top T; Bulut A; Kanberoglu GS; Kaya M; Zahmakiran M
    Inorg Chem; 2020 Jul; 59(14):9728-9738. PubMed ID: 32589025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyridinic Nitrogen-Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the N-Allylation Reaction.
    Li X; Zhao Q; Feng X; Pan L; Wu Z; Wu X; Ma T; Liu J; Pan Y; Song Y; Wu M
    ChemSusChem; 2019 Feb; 12(4):858-865. PubMed ID: 30600929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.