These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 32824615)
1. Improvement of PLLA Ductility by Blending with PVDF: Localization of Compatibilizers at Interface and Its Glycidyl Methacrylate Content Dependency. Zhang Y; Gu X; Ni C; Li F; Li Y; You J Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824615 [TBL] [Abstract][Full Text] [Related]
2. Reactive Compatibilization: Formation of Double-Grafted Copolymers by In Situ Binary Grafting and Their Compatibilization Effect. Chen D; Wang H; Li Y ACS Appl Mater Interfaces; 2017 Sep; 9(38):33091-33099. PubMed ID: 28882035 [TBL] [Abstract][Full Text] [Related]
3. Reactive Comb Polymer Compatibilized Immiscible PVDF/PLLA Blends: Effects of the Main Chain Structure of Compatibilizer. Yang X; Song J; Wang H; Lin Q; Jin X; Yang X; Li Y Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32121651 [TBL] [Abstract][Full Text] [Related]
4. Compatibilization of Immiscible Polymer Blends Using Wang H; Dong W; Li Y ACS Macro Lett; 2015 Dec; 4(12):1398-1403. PubMed ID: 35614790 [TBL] [Abstract][Full Text] [Related]
5. Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO Wang H; Fu Z; Zhao X; Li Y; Li J ACS Appl Mater Interfaces; 2017 Apr; 9(16):14358-14370. PubMed ID: 28379686 [TBL] [Abstract][Full Text] [Related]
6. Effects of blending sequences and molecular structures of the compatibilizers on the morphology and properties of PLLA/ABS blends. Cao X; Dong W; He M; Zhang J; Ren F; Li Y RSC Adv; 2019 Jan; 9(4):2189-2198. PubMed ID: 35516126 [TBL] [Abstract][Full Text] [Related]
7. Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends. Wang H; Fu Z; Dong W; Li Y; Li J J Phys Chem B; 2016 Sep; 120(34):9240-52. PubMed ID: 27505259 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity. Zhao X; Wang H; Fu Z; Li Y ACS Appl Mater Interfaces; 2018 Mar; 10(10):8411-8416. PubMed ID: 29488745 [TBL] [Abstract][Full Text] [Related]
9. Toughening Immiscible Polymer Blends: The Role of Interface-Crystallization-Induced Compatibilization Explored Through Nanoscale Visualization. Ahmadi H; van Heugten PMH; Veber A; Puskar L; Anderson PD; Cardinaels R ACS Appl Mater Interfaces; 2024 Oct; 16(43):59174-59187. PubMed ID: 39412248 [TBL] [Abstract][Full Text] [Related]
10. Phase Morphology and Mechanical Properties of Super-Tough PLLA/TPE/EMA-GMA Ternary Blends. Boruvka M; Base R; Novak J; Brdlik P; Behalek L; Ngaowthong C Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38256991 [TBL] [Abstract][Full Text] [Related]
11. Polymorphic Crystallization and Crystalline Reorganization of Poly(l-lactic acid)/Poly(d-lactic acid) Racemic Mixture Influenced by Blending with Poly(vinylidene fluoride). Yu C; Han L; Bao J; Shan G; Bao Y; Pan P J Phys Chem B; 2016 Aug; 120(32):8046-54. PubMed ID: 27414064 [TBL] [Abstract][Full Text] [Related]
12. Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) graft copolymer membranes via click chemistry and atom transfer radical polymerization. Cai T; Neoh KG; Kang ET; Teo SL Langmuir; 2011 Mar; 27(6):2936-45. PubMed ID: 21341769 [TBL] [Abstract][Full Text] [Related]
13. Tailor-Made Dispersion and Distribution of Stereocomplex Crystallites in Poly(l-lactide)/Elastomer Blends toward Largely Enhanced Crystallization Rate and Impact Toughness. Luo Y; Ju Y; Bai H; Liu Z; Zhang Q; Fu Q J Phys Chem B; 2017 Jun; 121(25):6271-6279. PubMed ID: 28587466 [TBL] [Abstract][Full Text] [Related]
14. Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends. Chang BP; Mohanty AK; Misra M RSC Adv; 2018 Aug; 8(49):27709-27724. PubMed ID: 35542721 [TBL] [Abstract][Full Text] [Related]
15. A Promising Recycling Strategy via Processing Polypropylene/Recycled Poly(ethylene terephthalate): Reactive Extrusion Using Dual Compatibilizers. Morshedi Dehaghi F; Aberoumand M; Sundararaj U Polymers (Basel); 2024 Aug; 16(17):. PubMed ID: 39274072 [TBL] [Abstract][Full Text] [Related]
16. Strengthening Interfacial Adhesion and Foamability of Immiscible Polymer Blends via Rationally Designed Reactive Macromolecular Compatibilizers. Wang Z; Zhang K; Wang H; Wu X; Wang H; Weng C; Li Y; Liu S; Yang J ACS Appl Mater Interfaces; 2022 Oct; 14(40):45832-45843. PubMed ID: 36169636 [TBL] [Abstract][Full Text] [Related]
17. Methyl Methacrylate-co-glycidyl Methacrylate-Based Dielectric Films with High Breakdown Strength and Discharge Energy Density Tailored by PVDF. Zheng S; Xie J; Zhao X; Sun S Langmuir; 2023 Mar; 39(10):3710-3719. PubMed ID: 36869872 [TBL] [Abstract][Full Text] [Related]
18. Nanocomposite Materials Based on TMDCs WS Naffakh M Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209153 [TBL] [Abstract][Full Text] [Related]
19. Super-tough poly (l-lactide) materials: Reactive blending with maleic anhydride grafted starch and poly (ethylene glycol) diacrylate. Yang C; Zhou M; Lin Y; Cheng C; Cheng F; Liu W; Zhu P Int J Biol Macromol; 2019 Sep; 136():1069-1075. PubMed ID: 31229539 [TBL] [Abstract][Full Text] [Related]
20. Effect of Ethylene/butyl methacrylate/Glycidyl Methacrylate Terpolymer on toughness and biodegradation of poly (l-lactic acid). Jia S; Chen Y; Yu Y; Han L; Zhang H; Dong L Int J Biol Macromol; 2019 Apr; 127():415-424. PubMed ID: 30659879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]