BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 32824687)

  • 1. Osteoclasts' Ability to Generate Trenches Rather Than Pits Depends on High Levels of Active Cathepsin K and Efficient Clearance of Resorption Products.
    Borggaard XG; Pirapaharan DC; Delaissé JM; Søe K
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steering the osteoclast through the demineralization-collagenolysis balance.
    Søe K; Merrild DM; Delaissé JM
    Bone; 2013 Sep; 56(1):191-8. PubMed ID: 23777960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The resorptive apparatus of osteoclasts supports lysosomotropism and increases potency of basic versus non-basic inhibitors of cathepsin K.
    Fuller K; Lindstrom E; Edlund M; Henderson I; Grabowska U; Szewczyk KA; Moss R; Samuelsson B; Chambers TJ
    Bone; 2010 May; 46(5):1400-7. PubMed ID: 20097319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse reveals that osteoclasts can move across the bone surface while resorbing.
    Søe K; Delaissé JM
    J Cell Sci; 2017 Jun; 130(12):2026-2035. PubMed ID: 28473470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts.
    Uehara S; Udagawa N; Kobayashi Y
    Cell Mol Life Sci; 2018 Oct; 75(20):3683-3692. PubMed ID: 30051162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HBP/O-GlcNAcylation Metabolic Axis Regulates Bone Resorption Outcome.
    Taira TM; Ramos-Junior ES; Melo PH; Costa-Silva CC; Alteen MG; Vocadlo DJ; Dias WB; Cunha FQ; Alves-Filho JC; Søe K; Fukada SY
    J Dent Res; 2023 Apr; 102(4):440-449. PubMed ID: 36749069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro.
    Morko J; Kiviranta R; Mulari MT; Ivaska KK; Väänänen HK; Vuorio E; Laitala-Leinonen T
    Bone; 2009 Apr; 44(4):717-28. PubMed ID: 19118660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
    Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA
    J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K.
    Ohmae S; Noma N; Toyomoto M; Shinohara M; Takeiri M; Fuji H; Takemoto K; Iwaisako K; Fujita T; Takeda N; Kawatani M; Aoyama M; Hagiwara M; Ishihama Y; Asagiri M
    Sci Rep; 2017 Mar; 7():41710. PubMed ID: 28300073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
    Wilson SR; Peters C; Saftig P; Brömme D
    J Biol Chem; 2009 Jan; 284(4):2584-92. PubMed ID: 19028686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Mild Inhibition of Cathepsin K Paradoxically Stimulates the Resorptive Activity of Osteoclasts in Culture.
    Pirapaharan DC; Søe K; Panwar P; Madsen JS; Bergmann ML; Overgaard M; Brömme D; Delaisse JM
    Calcif Tissue Int; 2019 Jan; 104(1):92-101. PubMed ID: 30194476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pit- and trench-forming osteoclasts: a distinction that matters.
    Merrild DM; Pirapaharan DC; Andreasen CM; Kjærsgaard-Andersen P; Møller AM; Ding M; Delaissé JM; Søe K
    Bone Res; 2015; 3():15032. PubMed ID: 26664853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erosive arthritis in a patient with pycnodysostosis: an experiment of nature.
    Ainola M; Valleala H; Nykänen P; Risteli J; Hanemaaijer R; Konttinen YT
    Arthritis Rheum; 2008 Nov; 58(11):3394-401. PubMed ID: 18975331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts.
    Vääräniemi J; Halleen JM; Kaarlonen K; Ylipahkala H; Alatalo SL; Andersson G; Kaija H; Vihko P; Väänänen HK
    J Bone Miner Res; 2004 Sep; 19(9):1432-40. PubMed ID: 15312243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption.
    Xu X; Hirata H; Shiraki M; Kamohara A; Nishioka K; Miyamoto H; Kukita T; Kukita A
    FASEB J; 2019 Mar; 33(3):4365-4375. PubMed ID: 30557043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolic activity of osteoblast lineage cells contributes to osteoclastic bone resorption
    Pirapaharan DC; Olesen JB; Andersen TL; Christensen SB; Kjærsgaard-Andersen P; Delaisse JM; Søe K
    J Cell Sci; 2019 May; 132(10):. PubMed ID: 30975918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones.
    Xia L; Kilb J; Wex H; Li Z; Lipyansky A; Breuil V; Stein L; Palmer JT; Dempster DW; Brömme D
    Biol Chem; 1999 Jun; 380(6):679-87. PubMed ID: 10430032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the Man-6-P targeting pathway in mice impairs osteoclast secretory lysosome biogenesis.
    van Meel E; Boonen M; Zhao H; Oorschot V; Ross FP; Kornfeld S; Klumperman J
    Traffic; 2011 Jul; 12(7):912-24. PubMed ID: 21466643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts.
    Yu J; Adapala NS; Doherty L; Sanjay A
    Bone; 2019 Oct; 127():376-385. PubMed ID: 31299383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking.
    Leung P; Pickarski M; Zhuo Y; Masarachia PJ; Duong LT
    Bone; 2011 Oct; 49(4):623-35. PubMed ID: 21718816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.