These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32824766)

  • 41. Correction: Bulsink et al. Oxygen Saturation Imaging Using LED-Based Photoacoustic System.
    Bulsink R; Kuniyil Ajith Singh M; Xavierselvan M; Mallidi S; Steenbergen W; Francis KJ
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Correction: Suwannapong, C. et al. Congestion Control in CoAP Observe Group Communication.
    Suwannapong C; Khunboa C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correction: Tang, K., et al., A Novel Fingerprint Sensing Technology Based on Electrostatic Imaging. Sensors 2018, 18, 3050.
    Tang K; Liu A; Wang W; Li P; Chen X
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974920
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Erratum: Fernandez-Palomo, C., et al. Animal Models in Microbeam Radiation Therapy: A Scoping Review.
    Fernandez-Palomo C; Fazzari J; Trappetti V; Smyth L; Janka H; Laissue J; Djonov V
    Cancers (Basel); 2020 Oct; 12(11):. PubMed ID: 33138341
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correction: Inkjet-printed O
    Fernández-Ramos MD; Pageo-Cabrera M; Capitán-Vallvey LF; Pérez de Vargas-Sansalvador IM
    Analyst; 2024 Apr; 149(8):2483. PubMed ID: 38497325
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correction: Zhang, P., et al. A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection. Sensors 2020, 20, 1154.
    Zhang P; Chen Y; Li Y; Zhang Y; Zhang J; Huang L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443818
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correction: Wang, Y.; et al. Magnesium Alloy Matching Layer for High-Performance Transducer Applications.
    Wang Y; Tao J; Guo F; Li S; Huang X; Dong J; Cao W
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31505871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition.
    Zhao B; Li S; Gao Y; Li C; Li W
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of deep learning for smartphone-based human activity recognition.
    Stampfler T; Elgendi M; Fletcher RR; Menon C
    Front Public Health; 2023; 11():1086671. PubMed ID: 36926170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endothelial NOD1 directs myeloid cell recruitment in atherosclerosis through VCAM-1.
    González-Ramos S; Paz-García M; Rius C; Del Monte-Monge A; Rodríguez C; Fernández-García V; Andrés V; Martínez-González J; Lasunción MA; Martín-Sanz P; Soehnlein O; Boscá L
    FASEB J; 2019 Mar; 33(3):3912-3921. PubMed ID: 30496704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correction: Li et al. Fringe Projection Profilometry Based on Saturated Fringe Restoration in High Dynamic Range Scenes.
    Li H; Wei H; Liu J; Deng G; Zhou S; Wang W; He L; Tian P
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37448094
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors.
    Liu X; Mei H; Lu H; Kuang H; Ma X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correction: Obata, K., et al. Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration.
    Obata K; Tsuchida S; Yamamoto H; Thome K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708337
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A lightweight hierarchical activity recognition framework using smartphone sensors.
    Han M; Bang JH; Nugent C; McClean S; Lee S
    Sensors (Basel); 2014 Sep; 14(9):16181-95. PubMed ID: 25184486
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Position-Aware Indoor Human Activity Recognition Using Multisensors Embedded in Smartphones.
    Wang X; Wang Y; Wu J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
    Kos A; Tomažič S; Umek A
    Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.