These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32824776)
1. In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration. Chor A; Gonçalves RP; Costa AM; Farina M; Ponche A; Sirelli L; Schrodj G; Gree S; Andrade LR; Anselme K; Dias ML Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824776 [TBL] [Abstract][Full Text] [Related]
2. Effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming capacity of electrospun PLGA/SiO(2)-CaO nonwoven composite fabrics. Kim IA; Rhee SH J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):218-26. PubMed ID: 20091921 [TBL] [Abstract][Full Text] [Related]
3. Growth behavior of endothelial cells according to electrospun poly(D,L-lactic-co-glycolic acid) fiber diameter as a tissue engineering scaffold. Ko YG; Park JH; Lee JB; Oh HH; Park WH; Cho D; Kwon OH Tissue Eng Regen Med; 2016 Aug; 13(4):343-351. PubMed ID: 30603416 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Characterization of Quantum Dot-Loaded Poly(lactic-co-glycolic) Acid Nanocomposite Fibers by an Electrospinning Process. Ankireddy SR; Kim J J Nanosci Nanotechnol; 2017 Apr; 17(4):2720-723. PubMed ID: 29664590 [TBL] [Abstract][Full Text] [Related]
5. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694 [TBL] [Abstract][Full Text] [Related]
6. Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering. Bazgir M; Zhang W; Zhang X; Elies J; Saeinasab M; Coates P; Youseffi M; Sefat F Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500862 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. Qi R; Cao X; Shen M; Guo R; Yu J; Shi X J Biomater Sci Polym Ed; 2012; 23(1-4):299-313. PubMed ID: 21244744 [TBL] [Abstract][Full Text] [Related]
8. Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique. Mekala NK; Baadhe RR; Parcha SR; Yalavarthy PD J Biomed Res; 2013 Jul; 27(4):318-25. PubMed ID: 23885272 [TBL] [Abstract][Full Text] [Related]
9. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Chen S; Jian Z; Huang L; Xu W; Liu S; Song D; Wan Z; Vaughn A; Zhan R; Zhang C; Wu S; Hu M; Li J Int J Nanomedicine; 2015; 10():3815-27. PubMed ID: 26082632 [TBL] [Abstract][Full Text] [Related]
10. Poly(lactic-co-glycolic acid)(PLGA)/TiO Eslami H; Azimi Lisar H; Jafarzadeh Kashi TS; Tahriri M; Ansari M; Rafiei T; Bastami F; Shahin-Shamsabadi A; Mashhadi Abbas F; Tayebi L Biologicals; 2018 May; 53():51-62. PubMed ID: 29503205 [TBL] [Abstract][Full Text] [Related]
11. Formulation and characterization of injectable poly(DL-lactide-co-glycolide) implants loaded with N-acetylcysteine, a MMP inhibitor. Desai KG; Mallery SR; Schwendeman SP Pharm Res; 2008 Mar; 25(3):586-97. PubMed ID: 17891553 [TBL] [Abstract][Full Text] [Related]
13. Dual-jet electrospun PDLGA/PCU nonwovens and their mechanical and hydrolytic degradation properties. Wlodarczyk J; Stojko M; Musial-Kulik M; Karpeta-Jarzabek P; Pastusiak M; Janeczek H; Dobrzynski P; Sobota M; Kasperczyk J J Mech Behav Biomed Mater; 2022 Feb; 126():105050. PubMed ID: 34959096 [TBL] [Abstract][Full Text] [Related]
14. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
16. Effect of acidic degradation products of poly(lactic-co-glycolic)acid on the apatite-forming ability of poly(lactic-co-glycolic)acid-siloxane nanohybrid material. Rhee SH; Lee SJ J Biomed Mater Res A; 2007 Dec; 83(3):799-805. PubMed ID: 17559116 [TBL] [Abstract][Full Text] [Related]
17. Preparation and Properties of Bamboo Fiber/Nano-hydroxyapatite/Poly(lactic-co-glycolic) Composite Scaffold for Bone Tissue Engineering. Jiang L; Li Y; Xiong C; Su S; Ding H ACS Appl Mater Interfaces; 2017 Feb; 9(5):4890-4897. PubMed ID: 28084718 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and Properties of Electrospun Magnetoelectric Graphene/Fe₃O₄/Poly(lactic-co-glycolic acid) Short Nanofibers. Li P; Xi Y; Li K; Qi B; Zhu F; Fan Y J Nanosci Nanotechnol; 2019 Jan; 19(1):170-175. PubMed ID: 30327018 [TBL] [Abstract][Full Text] [Related]
19. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483 [TBL] [Abstract][Full Text] [Related]
20. Effect of Electrospinning Parameters on the Fiber Diameter and Morphology of PLGA Nanofibers. Kalluri L; Satpathy M; Duan Y Dent Oral Biol Craniofacial Res; 2021; 4(2):. PubMed ID: 36970249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]