These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32824889)

  • 1. Multi-Sensor Data Fusion for Remaining Useful Life Prediction of Machining Tools by IABC-BPNN in Dry Milling Operations.
    Liu M; Yao X; Zhang J; Chen W; Jing X; Wang K
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32824889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models.
    Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations.
    Zhang C; Yao X; Zhang J; Jin H
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27258277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Tool Wear Prediction Technology Based on Multi-Sensor Information Fusion.
    Wang K; Wang A; Wu L; Xie G
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Sensor Data Fusion for Real-Time Surface Quality Control in Automated Machining Systems.
    García Plaza E; Núñez López PJ; Beamud González EM
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machining State-Based Approach to Tool Remaining Useful Life Adaptive Prediction.
    Li Y; Meng X; Zhang Z; Song G
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference.
    Peng C; Wu J; Wang Q; Gui W; Tang Z
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network.
    Wu J; Hu K; Cheng Y; Zhu H; Shao X; Wang Y
    ISA Trans; 2020 Feb; 97():241-250. PubMed ID: 31300159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes.
    Wang D; Xian X; Song C
    IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rolling Bearing Remaining Useful Life Prediction Based on CNN-VAE-MBiLSTM.
    Yang L; Jiang Y; Zeng K; Peng T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engine remaining useful life prediction model based on R-Vine copula with multi-sensor data.
    Liu S; Jiang H
    Heliyon; 2023 Jun; 9(6):e17118. PubMed ID: 37389066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-sensor information fusion detection system for fire robot through back propagation neural network.
    Zhang J; Ye Z; Li K
    PLoS One; 2020; 15(7):e0236482. PubMed ID: 32706794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explainable Remaining Tool Life Prediction for Individualized Production Using Automated Machine Learning.
    Krupp L; Wiede C; Friedhoff J; Grabmaier A
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Remaining Useful Life Prediction of Cutting Tools Using Sparse Augmented Lagrangian Analysis and Gaussian Process Regression.
    Qin X; Huang W; Wang X; Tang Z; Liu Z
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing.
    Yang C; Ma J; Wang X; Li X; Li Z; Luo T
    ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tool Wear Condition Monitoring by Combining Variational Mode Decomposition and Ensemble Learning.
    Yuan J; Liu L; Yang Z; Zhang Y
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A knowledge-data integration framework for rolling element bearing RUL prediction across its life cycle.
    Yang L; Li T; Dong Y; Duan R; Liao Y
    ISA Trans; 2024 Jul; ():. PubMed ID: 38987043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariate time series data of milling processes with varying tool wear and machine tools.
    Denkena B; Klemme H; Stiehl TH
    Data Brief; 2023 Oct; 50():109574. PubMed ID: 37808546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries.
    Jafari S; Byun YC
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.