These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 32825012)
1. Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Pantelias A; Zafiropoulos D; Cherubini R; Sarchiapone L; De Nadal V; Pantelias GE; Georgakilas AG; Terzoudi GI Cancers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825012 [TBL] [Abstract][Full Text] [Related]
2. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Terzoudi GI; Karakosta M; Pantelias A; Hatzi VI; Karachristou I; Pantelias G Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():185-98. PubMed ID: 26520389 [TBL] [Abstract][Full Text] [Related]
3. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Franken NA; Hovingh S; Ten Cate R; Krawczyk P; Stap J; Hoebe R; Aten J; Barendsen GW Oncol Rep; 2012 Mar; 27(3):769-74. PubMed ID: 22200791 [TBL] [Abstract][Full Text] [Related]
4. Interphase Cytogenetic Analysis of Micronucleated and Multinucleated Cells Supports the Premature Chromosome Condensation Hypothesis as the Mechanistic Origin of Chromothripsis. Pantelias A; Karachristou I; Georgakilas AG; Terzoudi GI Cancers (Basel); 2019 Aug; 11(8):. PubMed ID: 31390832 [TBL] [Abstract][Full Text] [Related]
5. Processing-Challenges Generated by Clusters of DNA Double-Strand Breaks Underpin Increased Effectiveness of High-LET Radiation and Chromothripsis. Mladenov E; Saha J; Iliakis G Adv Exp Med Biol; 2018; 1044():149-168. PubMed ID: 29956296 [TBL] [Abstract][Full Text] [Related]
6. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture. Timm S; Lorat Y; Jakob B; Taucher-Scholz G; Rübe CE Radiother Oncol; 2018 Dec; 129(3):600-610. PubMed ID: 30049456 [TBL] [Abstract][Full Text] [Related]
7. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Stewart RD; Yu VK; Georgakilas AG; Koumenis C; Park JH; Carlson DJ Radiat Res; 2011 Nov; 176(5):587-602. PubMed ID: 21823972 [TBL] [Abstract][Full Text] [Related]
9. Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation. Baumstark-Khan C; Heilmann J; Rink H Adv Space Res; 2003; 31(6):1583-91. PubMed ID: 12971414 [TBL] [Abstract][Full Text] [Related]
10. Proton and light ion RBE for the induction of direct DNA double strand breaks. Pater P; Bäckstöm G; Villegas F; Ahnesjö A; Enger SA; Seuntjens J; El Naqa I Med Phys; 2016 May; 43(5):2131. PubMed ID: 27147325 [TBL] [Abstract][Full Text] [Related]
11. DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches. Campa A; Ballarini F; Belli M; Cherubini R; Dini V; Esposito G; Friedland W; Gerardi S; Molinelli S; Ottolenghi A; Paretzke H; Simone G; Tabocchini MA Int J Radiat Biol; 2005 Nov; 81(11):841-54. PubMed ID: 16484153 [TBL] [Abstract][Full Text] [Related]
12. A model of radiation-induced cell killing: insights into mechanisms and applications for hadron therapy. Ballarini F; Altieri S; Bortolussi S; Giroletti E; Protti N Radiat Res; 2013 Sep; 180(3):307-15. PubMed ID: 23944606 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair. Lorat Y; Brunner CU; Schanz S; Jakob B; Taucher-Scholz G; Rübe CE DNA Repair (Amst); 2015 Apr; 28():93-106. PubMed ID: 25659339 [TBL] [Abstract][Full Text] [Related]
14. Heavy ion-induced chromosome breakage studied by premature chromosome condensation (PCC) in Syrian hamster embryo cells. Suzuki M; Watanabe M; Suzuki K; Nakano K; Matsui K Int J Radiat Biol; 1992 Nov; 62(5):581-6. PubMed ID: 1361515 [TBL] [Abstract][Full Text] [Related]
15. Chromosome aberrations in normal human fibroblasts analyzed in G0/G1 and G2/M phases after exposure in G0 to radiation with different linear energy transfer (LET). Liu C; Kawata T; Furusawa Y; Zhou G; Inoue K; Fukada J; Kota R; George K; Cucinotta F; Okayasu R Mutat Res; 2013 Aug; 756(1-2):101-7. PubMed ID: 23688614 [TBL] [Abstract][Full Text] [Related]
16. Biological characterization of low-energy ions with high-energy deposition on human cells. Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728 [TBL] [Abstract][Full Text] [Related]
17. Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Asaithamby A; Uematsu N; Chatterjee A; Story MD; Burma S; Chen DJ Radiat Res; 2008 Apr; 169(4):437-46. PubMed ID: 18363429 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Ar-ion and X-ray-induced chromatin breakage and repair in V79 plateau-phase cells by the premature chromosome condensation technique. Nasonova E; Gudowska-Nowak E; Ritter S; Kraft G Int J Radiat Biol; 2001 Jan; 77(1):59-70. PubMed ID: 11213351 [TBL] [Abstract][Full Text] [Related]
19. Automated Image Analysis of Transmission Electron Micrographs: Nanoscale Evaluation of Radiation-Induced DNA Damage in the Context of Chromatin. Abd Al-Razaq MA; Isermann A; Hecht M; Rübe CE Cells; 2023 Oct; 12(20):. PubMed ID: 37887271 [TBL] [Abstract][Full Text] [Related]
20. Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model. de Groot D; Spanjaard A; Hogenbirk MA; Jacobs H Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]