These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32825372)

  • 21. Tunable hybridization of graphene plasmons and dielectric modes for highly confined light transmit at terahertz wavelength.
    He XQ; Ning TG; Pei L; Zheng JJ; Li J; Wen XD
    Opt Express; 2019 Mar; 27(5):5961-5972. PubMed ID: 30876188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultracompact Graphene-Assisted Tunable Waveguide Couplers with High Directivity and Mode Selectivity.
    Meng Y; Hu F; Shen Y; Yang Y; Xiao Q; Fu X; Gong M
    Sci Rep; 2018 Sep; 8(1):13362. PubMed ID: 30190496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liquid crystal tunable claddings for polymer integrated optical waveguides.
    Otón JM; Caño-García M; Gordo F; Otón E; Geday MA; Quintana X
    Beilstein J Nanotechnol; 2019; 10():2163-2170. PubMed ID: 31807402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.
    Verhagen E; de Waele R; Kuipers L; Polman A
    Phys Rev Lett; 2010 Nov; 105(22):223901. PubMed ID: 21231386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides.
    Ding Y; Guan X; Zhu X; Hu H; Bozhevolnyi SI; Oxenløwe LK; Jin KJ; Mortensen NA; Xiao S
    Nanoscale; 2017 Oct; 9(40):15576-15581. PubMed ID: 28984878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene H-Waveguide for Terahertz Lasing Applications: Electromagnetic Quasi-Linear Theory.
    Kouzaev GA
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33287146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topologically protected edge states in graphene plasmonic crystals.
    Qiu P; Liang R; Qiu W; Chen H; Ren J; Lin Z; Wang JX; Kan Q; Pan JQ
    Opt Express; 2017 Sep; 25(19):22587-22594. PubMed ID: 29041566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-mode Hybrid Plasmonic Waveguides with Enhanced Confinement and Propagation.
    Colanduoni J; Nikolov D; Xu H
    Plasmonics; 2016; 11():763-769. PubMed ID: 27340379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides.
    Sun Y; Qiao G; Sun G
    Opt Express; 2014 Nov; 22(23):27880-91. PubMed ID: 25402030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene-based plasmonic switches at near infrared frequencies.
    Gómez-Díaz JS; Perruisseau-Carrier J
    Opt Express; 2013 Jul; 21(13):15490-504. PubMed ID: 23842336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromagnetic field coupling characteristics in graphene plasmonic oligomers: from isolated to collective modes.
    Ren J; Qiu W; Chen H; Qiu P; Lin Z; Wang JX; Kan Q; Pan JQ
    Phys Chem Chem Phys; 2017 Jun; 19(22):14671-14679. PubMed ID: 28537636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Atomic-Scale Confinement and Negative Refraction of Plasmons by Twisted Bilayer Graphene.
    Su X; Huang T; Zheng B; Wang J; Wang X; Yan S; Wang X; Shi Y
    Nano Lett; 2022 Nov; 22(22):8975-8982. PubMed ID: 36374517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of waveguide-integrated graphene devices for photonic gas sensing.
    Cheng Z; Goda K
    Nanotechnology; 2016 Dec; 27(50):505206. PubMed ID: 27855120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene.
    Shi B; Cai W; Zhang X; Xiang Y; Zhan Y; Geng J; Ren M; Xu J
    Sci Rep; 2016 May; 6():26796. PubMed ID: 27228949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode energy of graphene plasmons and its role in determining the local field magnitudes.
    Tang L; Nong J; Wei W; Zhang S; Zhu Y; Shang Z; Yi J; Wang W
    Opt Express; 2018 Mar; 26(5):6214-6221. PubMed ID: 29529813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.