These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32825406)

  • 1. Research of Wafer Level Bonding Process Based on Cu-Sn Eutectic.
    Wu D; Tian W; Wang C; Huo R; Wang Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32825406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Characterization of Low Temperature Wafer-Level Vacuum Packaging Using Cu-Sn Bonding and Nanomultilayer Getter.
    Kim T; Han S; Lee J; Na Y; Jung J; Park YC; Oh J; Yang C; Kim HY
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroplating characteristics of eutectic Sn-Cu ions for micro-solder bump on a Si chip.
    Park JK; Lee KJ; Jung JP
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3582-8. PubMed ID: 22849173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Low-Pressure Sn-Passivated Cu-to-Cu Direct Bonding in 3D-Integration.
    Kung PY; Huang WL; Kao CL; Lin YS; Hung YC; Kao CR
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroplated Al Press Marking for Wafer-Level Bonding.
    Al Farisi MS; Tsukamoto T; Tanaka S
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bonding-Based Wafer-Level Vacuum Packaging Using Atomic Hydrogen Pre-Treated Cu Bonding Frames.
    Tanaka K; Hirano H; Kumano M; Froemel J; Tanaka S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Die Shear Test of Silicon Packages Bonded by Thermocompression of Al Layers with Thin Sn Capping or Insertions.
    Satoh S; Fukushi H; Esashi M; Tanaka S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps.
    Roustaie F; Quednau S; Weißenborn F; Birlem O
    J Mater Eng Perform; 2021; 30(5):3173-3177. PubMed ID: 33776387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of wafer-level Cu-to-Cu bonding quality using wet chemical pretreatment.
    Kim JW; Jeon SJ; Lee HJ; Hyun S; Park YB
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3577-81. PubMed ID: 22849172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hermetic Packaging Based on Cu-Sn and Au-Au Dual Bonding for High-Temperature Graphene Pressure Sensor.
    Wang J; Zhang H; Chen X; Li M
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding.
    Tanaka K; Wang WS; Baum M; Froemel J; Hirano H; Tanaka S; Wiemer M; Otto T
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wafer-level vacuum package using glass-reflowed silicon through-wafer interconnection for nano/micro devices.
    Jin JY; Yoo SH; Yoo BW; Kim YK
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5252-62. PubMed ID: 22966554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Integrated Reactive Multilayer Systems for Bonding in Microsystem Technology.
    Bourim EM; Kang IS; Kim HY
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust terahertz polarizers with high transmittance at selected frequencies through Si wafer bonding technologies.
    Yu TY; Chi NC; Tsai HC; Wang SY; Luo CW; Chen KN
    Opt Lett; 2017 Dec; 42(23):4917-4920. PubMed ID: 29216144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Temperature Transient Liquid Phase Bonding Technology via Cu Porous-Sn58Bi Solid-Liquid System under Formic Acid Atmosphere.
    He S; Xiong B; Xu F; Chen B; Cui Y; Hu C; Yue G; Shen YA
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Cu/SiO
    Ong JJ; Chiu WL; Lee OH; Chiang CW; Chang HH; Wang CH; Shie KC; Yang SC; Tran DP; Tu KN; Chen C
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxide-Oxide Thermocompression Direct Bonding Technologies with Capillary Self-Assembly for Multichip-to-Wafer Heterogeneous 3D System Integration.
    Fukushima T; Hashiguchi H; Yonekura H; Kino H; Murugesan M; Bea JC; Lee KW; Tanaka T; Koyanagi M
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method for Fast Au-Sn Bonding at Low Temperature Using Thermal Gradient.
    Wang W; Liu Z; Qiu D; Zhu Z; Yan N; Ding S; Zhang DW
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Au Film Thickness and Surface Roughness on Room-Temperature Wafer Bonding and Wafer-Scale Vacuum Sealing by Au-Au Surface Activated Bonding.
    Yamamoto M; Matsumae T; Kurashima Y; Takagi H; Suga T; Takamatsu S; Itoh T; Higurashi E
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32349451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Based Nanomaterials for Fine-Pitch Interconnects in Microelectronics.
    Castillo E; Njuki M; Pasha AF; Dimitrov N
    Acc Chem Res; 2023 Jun; 56(12):1384-1394. PubMed ID: 37289991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.